CDES/1/11

A workcell consists of two machines M_1 and M_2 and an automated guided vehicle AGV. M_1 is directly loaded by an infinite resource of raw material, but the AGV has to move the workpiece from M_1 to M_2. The AGV also has to move the completed workpiece from M_2 to an infinite output buffer. The machines and the AGV are only able to keep one workpiece at a time.

1. Model the two machines and the AGV with three separate automata.

2. Construct a model of the whole workcell by doing the parallel composition $P = M_1 \| M_2 \| AGV$.

3. Which states are not accessible in the parallel composition? What is the physical reason for that the states are not accessible?

4. Show that deadlock is possible in P. Construct a string that takes P to a deadlock state. What is the physical interpretation of the deadlock?

5. What should be done in order to avoid the deadlock?