Approximation and Randomized Algorithms (ARA)

Lecture 1, September 3, 2012
Practicalities

- Code: 456314.0
 - intermediate and optional course
- Previous knowledge
 - 456305.0 Datastrukturer II (Algoritmer)
- Mondays and Wednesdays, 13:15-15:00
- Fortran (A3058) and Cobol (B3040)

- Components:
 - Lectures: 10 lectures (20h)
 - 2 lectures per week in weeks 36,39, 42
 - 1 lecture per week in weeks 37,38,40,41
 - Exercises: 5 exercise sessions in weeks 37,38,40,41,43.
 - Exam: 26.10 (week 43), 9.11 (week 45), 1.2.2013, 12.4.2013
Material

 - A few copies in the ICT-library
 - Basically chapters 11 and 13; but first chapters 1, 2, 8, 9, 10 (briefly)

- **Other**

- http://users.abo.fi/lpetre/ARA12/
Algorithms...

- The core of computer business
 - Computer science
 - Computer/software engineering
 - Information systems
- Some problems are simple
 - Simple methods to solve
 - Efficient (fast)
- Some problems are not simple
 - No known algorithm
Algorithms...

- The core of computer business
 - Computer science
 - Computer/software engineering
 - Information systems
- Some problems are simple
 - Simple methods to solve
 - Efficient (fast)
- Some problems are not simple
 - No known exact algorithm
 - Not efficient
Today

- Algorithm Revision
 - Algorithms for the **stable matching** problem
 - Five illustrative algorithm problems
 - Efficiency of algorithms
Stable matching problem

- 1962
 - David Gale and Lloyd Shapley -> mathematical economists
 - Could one design a college admission system or a job recruiting process that is self-enforcing?

- 1950s
 - National Resident Matching Program

- Given
 - Set of preferences among employers and applicants
 - Can we assign applicants to employers so that for every employer E and every applicant A who is not scheduled to work for E, we have at least one of:
 - E prefers every one of its accepted applicants to A
 - A prefers the current situation over working at E
Matching Residents to Hospitals

Goal. Given a set of preferences among hospitals and medical school students, design a self-reinforcing admissions process.

Unstable pair: applicant x and hospital y are unstable if:

- x prefers y to its assigned hospital.
- y prefers x to one of its admitted students.

Stable assignment. Assignment with no unstable pairs.

- Natural and desirable condition.
- Individual self-interest will prevent any applicant/hospital deal from being made.
Stable Matching Problem

Goal. Given n men and n women, find a "suitable" matching.

- Participants rate members of opposite sex.
- Each man lists women in order of preference from best to worst.
- Each woman lists men in order of preference from best to worst.

Men’s Preference Profile

<table>
<thead>
<tr>
<th>Favorite</th>
<th>2nd</th>
<th>3rd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Xavier</td>
<td>Amy</td>
<td>Bertha</td>
</tr>
<tr>
<td>Yancey</td>
<td>Bertha</td>
<td>Amy</td>
</tr>
<tr>
<td>Zeus</td>
<td>Amy</td>
<td>Bertha</td>
</tr>
</tbody>
</table>

Women’s Preference Profile

<table>
<thead>
<tr>
<th>Favorite</th>
<th>2nd</th>
<th>3rd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amy</td>
<td>Yancey</td>
<td>Xavier</td>
</tr>
<tr>
<td>Bertha</td>
<td>Xavier</td>
<td>Yancey</td>
</tr>
<tr>
<td>Clare</td>
<td>Xavier</td>
<td>Yancey</td>
</tr>
</tbody>
</table>

Zeus
Amy
Clare
Bertha
Yancey
Bertha
Clare
Amy
Xavier
Zeus
Bertha
Yancey
Zeus
Clare
Xavier
Yancey
Zeus
Stable Matching Problem

Perfect matching: everyone is matched monogamously.
- Each man gets exactly one woman.
- Each woman gets exactly one man.

Stability: no incentive for some pair of participants to undermine assignment by joint action.
- In matching M, an unmatched pair $m-w$ is unstable if man m and woman w prefer each other to current partners.
- Unstable pair $m-w$ could each improve by eloping.

Stable matching: perfect matching with no unstable pairs.

Stable matching problem. Given the preference lists of n men and n women, find a stable matching if one exists.
Questions

1. Does there exist a **stable matching** for every set of preference lists?

2. Given a set of preference lists, can we **efficiently** construct a **stable matching** if one exists?
Stable Matching Problem

Q. Is assignment X-C, Y-B, Z-A stable?

Men’s Preference Profile

<table>
<thead>
<tr>
<th></th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Xavier</td>
<td>Amy</td>
<td>Bertha</td>
<td>Clare</td>
</tr>
<tr>
<td>Yancey</td>
<td>Bertha</td>
<td>Amy</td>
<td>Clare</td>
</tr>
<tr>
<td>Zeus</td>
<td>Amy</td>
<td>Bertha</td>
<td>Clare</td>
</tr>
</tbody>
</table>

Women’s Preference Profile

<table>
<thead>
<tr>
<th></th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amy</td>
<td>Yancey</td>
<td>Xavier</td>
<td>Zeus</td>
</tr>
<tr>
<td>Bertha</td>
<td>Xavier</td>
<td>Yancey</td>
<td>Zeus</td>
</tr>
<tr>
<td>Clare</td>
<td>Xavier</td>
<td>Yancey</td>
<td>Zeus</td>
</tr>
</tbody>
</table>
Stable Matching Problem

Q. Is assignment X-C, Y-B, Z-A stable?
A. No. Bertha and Xavier will hook up.
Stable Matching Problem

Q. Is assignment X-A, Y-B, Z-C stable?

A. Yes.

Men’s Preference Profile

<table>
<thead>
<tr>
<th>favorite</th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Xavier</td>
<td>Amy</td>
<td>Bertha</td>
<td>Clare</td>
</tr>
<tr>
<td>Yancey</td>
<td>Bertha</td>
<td>Amy</td>
<td>Clare</td>
</tr>
<tr>
<td>Zeus</td>
<td>Amy</td>
<td>Bertha</td>
<td>Clare</td>
</tr>
</tbody>
</table>

Women’s Preference Profile

<table>
<thead>
<tr>
<th>favorite</th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amy</td>
<td>Yancey</td>
<td>Xavier</td>
<td>Zeus</td>
</tr>
<tr>
<td>Bertha</td>
<td>Xavier</td>
<td>Yancey</td>
<td>Zeus</td>
</tr>
<tr>
<td>Clare</td>
<td>Xavier</td>
<td>Yancey</td>
<td>Zeus</td>
</tr>
</tbody>
</table>
Propose-And-Reject Algorithm

Initialize each person to be free.
while (some man is free and hasn't proposed to every woman) {
 Choose such a man \(m \)
 \(w = 1^{st} \) woman on \(m \)'s list to whom \(m \) has not yet proposed
 if (\(w \) is free)
 assign \(m \) and \(w \) to be engaged
 else if (\(w \) prefers \(m \) to her fiancé \(m' \))
 assign \(m \) and \(w \) to be engaged, and \(m' \) to be free
 else
 \(w \) rejects \(m \)
}

Proof of Correctness: Termination

Observation 1. Men propose to women in decreasing order of preference.

Observation 2. Once a woman is matched, she never becomes unmatched; she only "trades up."

Claim. Algorithm terminates after at most n^2 iterations of while loop.

Pf. Each time through the while loop a man proposes to a new woman. There are only n^2 possible proposals.

$$n(n-1) + 1 \text{ proposals required}$$

<table>
<thead>
<tr>
<th></th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
<th>4th</th>
<th>5th</th>
</tr>
</thead>
<tbody>
<tr>
<td>Victor</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
</tr>
<tr>
<td>Wyatt</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>A</td>
<td>E</td>
</tr>
<tr>
<td>Xavier</td>
<td>C</td>
<td>D</td>
<td>A</td>
<td>B</td>
<td>E</td>
</tr>
<tr>
<td>Yancey</td>
<td>D</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>E</td>
</tr>
<tr>
<td>Zeus</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
<th>4th</th>
<th>5th</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amy</td>
<td>W</td>
<td>X</td>
<td>Y</td>
<td>Z</td>
<td>V</td>
</tr>
<tr>
<td>Bertha</td>
<td>X</td>
<td>Y</td>
<td>Z</td>
<td>V</td>
<td>W</td>
</tr>
<tr>
<td>Clare</td>
<td>Y</td>
<td>Z</td>
<td>V</td>
<td>W</td>
<td>X</td>
</tr>
<tr>
<td>Diane</td>
<td>Z</td>
<td>V</td>
<td>W</td>
<td>X</td>
<td>Y</td>
</tr>
<tr>
<td>Erika</td>
<td>V</td>
<td>W</td>
<td>X</td>
<td>Y</td>
<td>Z</td>
</tr>
</tbody>
</table>
Proof of Correctness: Perfection

Claim. All men and women get matched.
Pf. (by contradiction)

- Suppose, for sake of contradiction, that Zeus is not matched upon termination of algorithm.
- Then some woman, say Amy, is not matched upon termination.
- By Observation 2, Amy was never proposed to.
- But, Zeus proposes to everyone, since he ends up unmatched. □
Proof of Correctness: Stability

Claim. No unstable pairs.

Pf. (by contradiction)
- Suppose A-Z is an unstable pair: each prefers each other to partner in Gale-Shapley matching S^*.

- **Case 1:** Z never proposed to A.
 \Rightarrow Z prefers his GS partner to A.
 \Rightarrow A-Z is stable.

- **Case 2:** Z proposed to A.
 \Rightarrow A rejected Z (right away or later)
 \Rightarrow A prefers her GS partner to Z.
 \Rightarrow A-Z is stable.

- In either case A-Z is stable, a contradiction. □
Summary

Stable matching problem. Given n men and n women, and their preferences, find a stable matching if one exists.

Gale-Shapley algorithm. Guarantees to find a stable matching for any problem instance.

Q. If there are multiple stable matchings, which one does GS find?
Extensions: Matching Residents to Hospitals

Ex: Men \approx hospitals, Women \approx med school residents.

Variant 1. Some participants declare others as unacceptable.

Variant 2. Unequal number of men and women.

Variant 3. Limited polygamy.

Def. Matching S unstable if there is a hospital h and resident r such that:

- h and r are acceptable to each other; and
- either r is unmatched, or r prefers h to her assigned hospital; and
- either h does not have all its places filled, or h prefers r to at least one of its assigned residents.

resident A unwilling to work in Cleveland

hospital X wants to hire 3 residents
Stable matching problem

- Enough precision to
 - ask concrete questions
 - start thinking about an algorithm to solve the problem
- Design algorithm for problem
- Analyze algorithm
 - Correctness
 - Bound on running time
- Fundamental design techniques
Five representative problems

- Interval scheduling
- Weighted interval scheduling
- Bipartite matching
- Independent set
- Competitive facility location
Interval Scheduling

Input. Set of jobs with start times and finish times.

Goal. Find maximum cardinality subset of mutually compatible jobs.

[jobs don't overlap]
Weighted Interval Scheduling

Input. Set of jobs with start times, finish times, and weights.

Goal. Find **maximum weight** subset of mutually compatible jobs.
Bipartite Matching

Input. Bipartite graph.

Goal. Find *maximum cardinality* matching.
Independent Set

Input. Graph.

Goal. Find maximum cardinality independent set.

subset of nodes such that no two joined by an edge
Competitive Facility Location

Input. Graph with weight on each node.

Game. Two competing players alternate in selecting nodes. Not allowed to select a node if any of its neighbors have been selected.

Goal. Select a maximum weight subset of nodes.

Second player can guarantee 20, but not 25.
Five Representative Problems

Variations on a theme: independent set.

Interval scheduling: \(n \log n \) greedy algorithm.

Weighted interval scheduling: \(n \log n \) dynamic programming algorithm.

Bipartite matching: \(n^k \) max-flow based algorithm.

Independent set: NP-complete.

Competitive facility location: PSPACE-complete.
Algorithm analysis

- How do resource requirements change when input size increases?
 - Time, space
 - Notational machinery
- Problems of *discrete* nature
 - Implicit searching over large space of possibilities
 - Goal: efficiently find solution satisfying conditions
- Focus on *running time*
Algorithm efficiency

1. An algorithm is **efficient** if, when implemented, it runs quickly on real-input instances.
Worst-Case Analysis

Worst case running time. Obtain bound on largest possible running time of algorithm on input of a given size N.

• Generally captures efficiency in practice.
• Draconian view, but hard to find effective alternative.

Average case running time. Obtain bound on running time of algorithm on random input as a function of input size N.

• Hard (or impossible) to accurately model real instances by random distributions.
• Algorithm tuned for a certain distribution may perform poorly on other inputs.
Algorithm efficiency

1. An algorithm is **efficient** if, when implemented, it runs quickly on real-input instances.

2. An algorithm is **efficient** if it achieves a better worst-case performance, at an analytical level, then brute-force search.

→ Brute-force search provides no insight into the structure of the problem we are studying!
Polynomial-Time

Brute force. For many non-trivial problems, there is a natural brute force search algorithm that checks every possible solution.
- Typically takes 2^N time or worse for inputs of size N.
- Unacceptable in practice.

Desirable scaling property. When the input size doubles, the algorithm should only slow down by some constant factor C.

There exists constants $c > 0$ and $d > 0$ such that on every input of size N, its running time is bounded by $c N^d$ steps.

Def. An algorithm is **poly-time** if the above scaling property holds.

choose $C = 2^d$
Worst-Case Polynomial-Time

Def. An algorithm is **efficient** if its running time is polynomial.

Justification: It really works in practice!
- Although $6.02 \times 10^{23} \times N^{20}$ is technically poly-time, it would be useless in practice.
- In practice, the poly-time algorithms that people develop almost always have low constants and low exponents.
- Breaking through the exponential barrier of brute force typically exposes some crucial structure of the problem.

Exceptions.
- Some poly-time algorithms do have high constants and/or exponents, and are useless in practice.
- Some exponential-time (or worse) algorithms are widely used because the worst-case instances seem to be rare.

simplex method
Unix grep
Why It Matters

Table 2.1 The running times (rounded up) of different algorithms on inputs of increasing size, for a processor performing a million high-level instructions per second. In cases where the running time exceeds 10^{25} years, we simply record the algorithm as taking a very long time.

<table>
<thead>
<tr>
<th>n</th>
<th>n</th>
<th>$n \log_2 n$</th>
<th>n^2</th>
<th>n^3</th>
<th>1.5^n</th>
<th>2^n</th>
<th>$n!$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$n = 10$</td>
<td>< 1 sec</td>
<td>4 sec</td>
</tr>
<tr>
<td>$n = 30$</td>
<td>< 1 sec</td>
<td>18 min</td>
<td>10^{25} years</td>
</tr>
<tr>
<td>$n = 50$</td>
<td>< 1 sec</td>
<td>< 1 sec</td>
<td>< 1 sec</td>
<td>< 1 sec</td>
<td>11 min</td>
<td>36 years</td>
<td>very long</td>
</tr>
<tr>
<td>$n = 100$</td>
<td>< 1 sec</td>
<td>< 1 sec</td>
<td>< 1 sec</td>
<td>1 sec</td>
<td>12,892 years</td>
<td>10^{17} years</td>
<td>very long</td>
</tr>
<tr>
<td>$n = 1,000$</td>
<td>< 1 sec</td>
<td>< 1 sec</td>
<td>1 sec</td>
<td>18 min</td>
<td>very long</td>
<td>very long</td>
<td>very long</td>
</tr>
<tr>
<td>$n = 10,000$</td>
<td>< 1 sec</td>
<td>< 1 sec</td>
<td>2 min</td>
<td>12 days</td>
<td>very long</td>
<td>very long</td>
<td>very long</td>
</tr>
<tr>
<td>$n = 100,000$</td>
<td>< 1 sec</td>
<td>2 sec</td>
<td>3 hours</td>
<td>32 years</td>
<td>very long</td>
<td>very long</td>
<td>very long</td>
</tr>
<tr>
<td>$n = 1,000,000$</td>
<td>1 sec</td>
<td>20 sec</td>
<td>12 days</td>
<td>31,710 years</td>
<td>very long</td>
<td>very long</td>
<td>very long</td>
</tr>
</tbody>
</table>
More on the definition of efficiency in terms of poly-time

- This definition is negatable: we can say *when there is no efficient algorithm for a particular problem*
- Previous definitions were subjective
 - First definition turned efficiency into a moving target
 - The poly-time definition is more absolute
- Promotes the idea that problems have an intrinsic level of computational tractability
 - Some admit efficient solutions, some do not
Asymptotic Order of Growth

Upper bounds. T(n) is \(O(f(n)) \) if there exist constants \(c > 0 \) and \(n_0 \geq 0 \) such that for all \(n \geq n_0 \) we have \(T(n) \leq c \cdot f(n) \).

Lower bounds. T(n) is \(\Omega(f(n)) \) if there exist constants \(c > 0 \) and \(n_0 \geq 0 \) such that for all \(n \geq n_0 \) we have \(T(n) \geq c \cdot f(n) \).

Tight bounds. T(n) is \(\Theta(f(n)) \) if T(n) is both \(O(f(n)) \) and \(\Omega(f(n)) \).

Ex: \(T(n) = 32n^2 + 17n + 32 \).
- \(T(n) \) is \(O(n^2), O(n^3), \Omega(n^2), \Omega(n), \) and \(\Theta(n^2) \).
- \(T(n) \) is not \(O(n), \Omega(n^3), \Theta(n), \) or \(\Theta(n^3) \).
Properties

Transitivity.

- If $f = O(g)$ and $g = O(h)$ then $f = O(h)$.
- If $f = \Omega(g)$ and $g = \Omega(h)$ then $f = \Omega(h)$.
- If $f = \Theta(g)$ and $g = \Theta(h)$ then $f = \Theta(h)$.

Additivity.

- If $f = O(h)$ and $g = O(h)$ then $f + g = O(h)$.
- If $f = \Omega(h)$ and $g = \Omega(h)$ then $f + g = \Omega(h)$.
- If $f = \Theta(h)$ and $g = O(h)$ then $f + g = \Theta(h)$.
Asymptotic Bounds for Some Common Functions

Polynomials. $a_0 + a_1n + \ldots + a_dn^d$ is $\Theta(n^d)$ if $a_d > 0$.

Polynomial time. Running time is $O(n^d)$ for some constant d independent of the input size n.

Logarithms. $O(\log_a n) = O(\log_b n)$ for any constants $a, b > 0$.

\uparrow

can avoid specifying the base

Logarithms. For every $x > 0$, $\log n = O(n^x)$.

\uparrow

log grows slower than every polynomial

Exponentials. For every $r > 1$ and every $d > 0$, $n^d = O(r^n)$.

\uparrow

every exponential grows faster than every polynomial
Linear Time: $O(n)$

Linear time. Running time is at most a constant factor times the size of the input.

Computing the maximum. Compute maximum of n numbers a_1, \ldots, a_n.

```
max ← a_1
for i = 2 to n {
    if (a_i > max)
        max ← a_i
}
```
Linear Time: $O(n)$

Merge. Combine two sorted lists $A = a_1, a_2, \ldots, a_n$ with $B = b_1, b_2, \ldots, b_n$ into sorted whole.

\[\begin{array}{c}
\text{Merged result} \\
\text{A} \\
\text{B} \\
\end{array} \]

Claim. Merging two lists of size n takes $O(n)$ time.

Pf. After each comparison, the length of output list increases by 1.

\[
i = 1, j = 1
\]

while (both lists are nonempty) {
 \[
 \begin{align*}
 \text{if} \ (a_i \leq b_j) & \text{ append } a_i \text{ to output list and increment } i \\
 \text{else} & \text{ append } b_j \text{ to output list and increment } j \\
 \end{align*}
 \]
}

append remainder of nonempty list to output list
O(n log n) Time

O(n log n) time. Arises in divide-and-conquer algorithms.
also referred to as linearithmic time

Sorting. Mergesort and heapsort are sorting algorithms that perform O(n log n) comparisons.

Largest empty interval. Given n time-stamps x_1, \ldots, x_n on which copies of a file arrive at a server, what is largest interval of time when no copies of the file arrive?

O(n log n) solution. Sort the time-stamps. Scan the sorted list in order, identifying the maximum gap between successive time-stamps.
Quadratic Time: $O(n^2)$

- Quadratic time. Enumerate all pairs of elements.

- Closest pair of points. Given a list of n points in the plane $(x_1, y_1), \ldots, (x_n, y_n)$, find the pair that is closest.

- $O(n^2)$ solution. Try all pairs of points.

```plaintext
min ← (x_1 - x_2)^2 + (y_1 - y_2)^2
for i = 1 to n {
    for j = i+1 to n {
        d ← (x_i - x_j)^2 + (y_i - y_j)^2
        if (d < min)
            min ← d
    }
}
```

- Remark. $\Omega(n^2)$ seems inevitable, but this is just an illusion.
Cubic Time: $O(n^3)$

Cubic time. Enumerate all triples of elements.

Set disjointness. Given n sets S_1, \ldots, S_n each of which is a subset of $1, 2, \ldots, n$, is there some pair of these which are disjoint?

$O(n^3)$ solution. For each pairs of sets, determine if they are disjoint.

```plaintext
foreach set $S_i$ {
    foreach other set $S_j$ {
        foreach element $p$ of $S_i$ {
            determine whether $p$ also belongs to $S_j$
        }
        if (no element of $S_i$ belongs to $S_j$)
            report that $S_i$ and $S_j$ are disjoint
    }
}
```
Polynomial Time: $O(n^k)$ Time

Independent set of size k. Given a graph, are there k nodes such that no two are joined by an edge?

k is a constant

$O(n^k)$ solution. Enumerate all subsets of k nodes.

```
foreach subset S of k nodes {
    check whether S is an independent set
    if (S is an independent set)
        report S is an independent set
}
```

- Check whether S is an independent set = $O(k^2)$.
- Number of k element subsets = \[
\binom{n}{k} = \frac{n(n-1)(n-2)\ldots(n-k+1)}{k(k-1)(k-2)\ldots(2)(1)} \leq \frac{n^k}{k!}
\]
 - poly-time for $k=17$, but not practical

$O(k^2 \cdot n^k / k!) = O(n^k)$.
Exponential Time

Independent set. Given a graph, what is maximum size of an independent set?

$O(n^2 2^n)$ solution. Enumerate all subsets.

```plaintext
S* ← φ
foreach subset S of nodes {
    check whether S in an independent set
    if (S is largest independent set seen so far)
        update S* ← S
}
```
Summing up

- Finding algorithms for practical problems
 - Depends on the problem
 - The efficiency of the algorithm varies

- Next time
 - There is (some) hope for NP-completeness