New nucleoside analogs from 2-amino-9-(β-D-ribofuranosyl)purine

Piritta Virta,* Toni Holmström,* Mattias U. Roslund,* Peter Mattjus,* Leif Kronberg* and Rainer Sjöholm*

*Abo Akademi University, Department of Organic Chemistry, Biskopsgatan 8, FIN-20500 Turku, Finland. E-mail: piritta.virta@abo.fi; Fax: +358 2 2144866;
Tel: +358 2 2154502
b Abo Akademi University, Department of Biochemistry and Pharmacy, FIN-20520 Turku, Finland

Received 16th December 2003, Accepted 6th February 2004
First published as an Advance Article on the web 25th February 2004

Four novel derivatives of 2-amino-9-(β-D-ribofuranosyl)purine (I) were synthesised and fully characterised. When I was reacted with chloroacetaldehyde (a), 2-chloropropanal (b), bromomalonaldehyde (c) and a mixture of chloroacetaldehyde + malonaldehyde (d), 3-(β-D-ribofuranosyl)-imidazo-[1,2a]purine (2), 3-(β-D-ribofuranosyl)-5-methylimidazo-[1,2a]purine (3), 3-(β-D-ribofuranosyl)-5-formylimidazo-[1,2a]purine (4) and 9-(β-D-ribofuranosyl)-2-(3,5-diformyl-4-methyl-1,4-dihydro-1-pyridyl)purine (5) were formed, respectively. The products were isolated, purified by chromatography and characterised by MS, complete NMR assignment as well as fluorescence and UV spectroscopy. The yields of these reactions were moderate (14–20%). The fluorescence properties differed from those of the starting compound and the quantum yields were considerably lower.

Introduction

Haloacetaldehydes have been shown to react with nucleic acid components yielding etheno derivatives of adenosine, guanosine and cytidine.1 The 1,N6-ethenodeoxyadenosine derivatives, due to their fluorescence, are useful compounds for e.g. the studies of mutagenesis2 and enzymeology.3 Fluorescence in general is an extremely useful tool for the investigation of biological material. The incorporation of fluorescent nucleosides into oligonucleotides will greatly facilitate studies of the structure–function of various RNAs, protein–RNA structures, and DNA-RNA based diagnostic applications.4 That is why a large variety of fluorescent molecules have been incorporated into DNA/RNA and proteins e.g. 3-methyl-isoxanthopterin and 2-aminopurine, 1,N6-ethenoadenosine.5,6 Fluorescent dihydroxypridine derivatives of natural nucleosides and proteins have also been previously reported.6

Our research in the field of nucleoside chemistry originally aimed at synthesising modified fluorescent RNA bases.7 However, our present investigations are also directed toward the preparation of RNA base analogues, which might have other interesting applications than only those associated with their fluorescence properties. To our knowledge 2-amino-9-(β-D-ribofuranosyl)purine (I) has not been used to produce different etheno or dihydroxypyridine derivatives and it was expected that the reactivity of the unnatural nucleobase would be higher than that of natural nucleobases, which are generally classified as quite unreactive. The compound I was prepared in two steps starting from guanosine.8 Other methods are also available.9

In the current work, we report on the synthesis of four novel derivatives of 2-amino-9-(β-D-ribofuranosyl)purine (I). They are formed in the reaction of compound I with chloroacetaldehyde (a), 2-chloropropanal (b), bromomalonaldehyde (c) and chloroacetaldehyde + malonaldehyde (d), respectively (Scheme 1). We present in this contribution, the details of the synthetic procedures, the complete structural analysis, which includes MS, NMR analyses (1H, 13C, 15N-chemical shifts and coupling constants), as well as fluorescence and UV spectral properties. The fluorescence intensities and lifetimes compared to those of I are discussed.

Results and discussion

The products (2–5) were synthesised using the reagents shown in Scheme 1. The reactions of 2-amino-9-(β-D-ribofuranosyl)purine (I) with the aldehydes a–d were carried out in aqueous solution at pH 4.5. The progress of the reactions was monitored by HPLC analysis on a reversed phase (C 18) column and the molecular weights of formed products were

Scheme 1

a. CH2CHO, b. CH2CH2CHO, c. Bi(CH2CHO)2, d. CH2CHO + CH2CHO2
obtained from LC-MS analyses of the reaction mixture. The products were isolated by preparative reversed phase chromatography and were fully characterised by \(^1\)H-, \(^{13}\)C- and \(^{14}\)N NMR spectroscopy, electrospray mass spectrometry, HRMS, fluorescence spectroscopy and UV absorption.

The yields of 2, 3, 4 and 5 were 14\%, 17\%, 20\% and 16\% respectively. The NMR spectroscopic data, the mass spectroscopic and UV properties are given in the Experimental section. The fluorescence properties are presented in Tables 1 and 2 and Fig. 2.

Mechanisms

The formation of ethenoadenosine from adenosine on treatment with chloroacetaldehyde has earlier been described in the literature.\(^{10}\) The formation of compounds 2–4 from reactions a–c can be expected to follow a similar mechanism. That is, the reaction is initiated by attack of the exocyclic amino group of the nucleobase on the carbonyl carbon of the different aldehydes used in a–c. Subsequently, the halogen atom is displaced by intramolecular nucleophilic attack of the ring nitrogen. Finally, the products are obtained through dehydration of the cyclic intermediates (Scheme 2). LC-MS analysis of the reaction mixture of aldehyde c and starting material 1, showed the presence of a molecule with mass \(m/z\) 338 and according to \(^1\)H NMR the compound was the carbinolamine intermediate (Fig. 1), which supports the described mechanism.

Malonaldehyde–acetaldehyde conjugates have previously been reacted with 2′-deoxyadenosine, cytidine and proteins.\(^{8}\) There have been different suggestions for the mechanism involved.\(^{11}\) In the work of Gómez-Sánchez et. al. it was presented that condensation of aliphatic aldehydes with malonaldehyde is a general reaction giving first a 1 : 1 conjugate and with an excess of a malonaldehyde, a 2 : 1 conjugate. (Scheme 3).\(^{12}\) In the present reaction the 2 : 1 conjugate would then react with the amino group of compound 1, to form product 5 (Scheme 3).

NMR parameters

In the reactions a–c the formation of two different regioisomers was possible. Thus complete NMR spectroscopic analysis was necessary for the determination of which isomer was preferentially formed (Scheme 4).

[Scheme 4]

3-(\(\beta\)-D-Ribofuranosyl)-imidazo-[1,2a]purine (2). In the \(^1\)H NMR spectrum of compound 2, two singlet and two doublet resonance signals from the protons in the base unit were observed. The signal at \(\delta \) 8.79 ppm was assigned to H-2 based on the observed long-range H–H (long-range COSY) and HMBC correlation to the sugar unit. The other singlet at \(\delta \) 9.56 ppm was assigned to H-9. The large downfield shift of H-9 can be explained by the high electron density at C-9 (\(\delta \) 126.67 ppm) due to resonance of the non-aromatic double-bond system with the non-bonding electrons on N-3. This resonance places a partial negative charge on C-9 which repels the electron cloud around H-9 causing a downfield shift of the proton. This indicates that 2 has the linear (1, \(N^2\)-etheno) rather than the angular (\(N^3,3\)-etheno) tricyclic structure. The doublets at \(\delta \) 7.95 (J 1.5 Hz) and 7.68 ppm (J 1.5 Hz) were assigned to H-7 and H-6, respectively. Both doublets showed a strong H–H correlation with each other. The linear tricyclic structure was definitely assigned based on the 2D NOESY spectrum and the \(^1\)H–\(^{13}\)N HMBC data. The signal at \(\delta \) –191 ppm was assigned to N-8 based on its chemical shift and its correlations to the signals of H-6, H-7 and H-9. Correlations between the signals of H-6, H-7 and the nitrogen signal at \(\delta \) –155 ppm assigned the signal to N-5 confirming that the etheno bridge was situated between N-5 and N-8. The nitrogen signal at \(\delta \) –216 ppm was assigned to N-3 based on its chemical shift and its correlation with the signals of H-1’ and H-2’. The nitrogen signal at \(\delta \) –142 ppm showed correlation to the signal from H-2 and was assigned to N-1. The nitrogen signal at \(\delta \) –161 ppm correlated with the signal of H-9 and was assigned to N-4. No amino group nitrogen could be detected by \(^{14}\)N NMR spectroscopy. In the \(^{13}\)C NMR spectrum seven signals from the base and five signals from the ribosyl unit were observed. The signals of carbons bonded to hydrogen atoms were assigned from the one-bond C–H correlation spectra (HMOC or HETCOR). Thus the signals at \(\delta \) 126.67 ppm and 148.68 ppm were assigned to C-9 and C-2, respectively. The latter signal also displayed a long-range correlation to H-1’ and H-2’ in the HMBC spectrum. The signal at \(\delta \) 146.51 ppm displayed H–C long-range correlation with the signals of H-6 and H-7 and was assigned to C-4a. The carbon signal at \(\delta \) 127.57 ppm was assigned to C-9a based on its correlation with the signal of H-2 and its large trans-vicinal coupling constant to H-2 (J 13 Hz), which has been observed previously for similar compounds.\(^{15}\) The signal at \(\delta \) 149.72 ppm displayed H–C long-range correlation with the signals of H-2, H-9 and H-1’ and was assigned to C-3a. The signals of the ribosyl moiety were assigned using correlation spectroscopy.
3-[(β-D-Ribofuranosyl)-5-methylimidazo-[1,2-a]purine (3). In the 1H NMR spectrum of 3, besides the ribosyl protons four signals from the base moiety were observed. The singlet at δ 2.51 ppm was assigned to CH$_3$ on the basis of the area integral (3H, doublet J 0.3 Hz) and the large upfield shift. Further, it had NOESY correlations to H-6 (J 9.29 ppm) and H-6 (J 7.43 ppm, d, J 0.3 Hz). The proton giving a singlet at δ 8.76 ppm displayed a NOESY interaction and a long-range correlation with H-1' and H-2' in the ribose unit, and the signal was assigned to H-2. All 13C signals were determined from the 1H-1H NMR spectrum as described for compound 2 and had similar chemical shifts to those of compound 2. The 1C NMR spectrum displayed eight signals that originated from the modified base moiety. The proton binding carbons were identified from C–H correlation spectra. The carbon signal for the methyl group was observed at δ 8.89. The carbons C-6 (one proton attached) and C-7 in the etheno bridge gave resonance signals at δ 131.44 and 117.68 ppm, respectively. The methyl group carbon and C-7 showed also long-range C–H couplings to the H-9 in the base unit. The signals at δ 124.27 ppm and 148.38 ppm were assigned to be C-9 and C-2, respectively. These assignments were supported by the 2D HMBC correlation data. The carbon signals at δ 127.37 ppm, 146.07 ppm and 148.83 ppm were assigned to be C-9a, C-4a and C-3a, respectively, based on the long-range H–C correlations in HMBC as described for compound 2. The signals of the ribosyl moiety were assigned using correlation spectroscopy.

3-[(β-D-Ribofuranosyl)-5-formylimidazo-[1,2-a]purine (4). In addition to the ribosyl protons the 1H NMR spectrum of compound 4 also displayed four singlets. The singlet at δ 9.89 ppm was assigned to the formyl proton on the basis of its correlation with the carbon signal at δ 178.13 ppm and its H–H correlation to the proton signal at δ 8.67 ppm assigned to H-6 and the HMBC correlation to C-7 at δ 127.46 ppm identified from the large geminal C-χC=O coupling (J 31 Hz). The large downfield shift of H-9 (δ 10.10 ppm) can be explained by the anisotropic effect of the formyl group. The proton signal at δ 9.00 ppm was assigned to H-2 in the purine ring on the basis of its COSY correlation to H-1' in the ribosyl moiety. An eight-membered H–H correlation was also observed between the signals of H-2 and H-6 suggesting a highly planar zig-zag arrangement of the bonds and this supported the linear structure of the three-membered ring. All 13C signal shifts were determined from the 1H–1H NMR spectra. Eight carbon signals from the modified base moiety were detected. The methine carbons at δ 149.46 and 127.90 ppm were assigned to C-2 and C-2', respectively, from the long-range H–C correlations. The carbon signal for the methyl group from the dihydropyridyl moiety was assigned by its 13C HMBC correlation to H-5. The signals of C-2' as well as those of the formyl carbons appeared as pairs of peaks, most probably due to the presence of a mixture of two diastereomers. This could, however, not be confirmed by HPLC as only one peak was shown in the chromatogram. The carbon signals at δ 132.05, 152.18 and 150.07 ppm were assigned to C-5, C-4 and C-2, respectively, from the long-range H–C correlations in HMBC. All nitrogen shifts could be assigned from the inverse detection experiment and the signals of the ribosyl moiety were easily assigned using correlation spectroscopy.

Fluorescence properties

Unlike natural DNA bases, 2-aminoo-9-[(β-D-ribofuranosyl)-purine (1), is fluorescent at neutral pH and this native fluorescence has been demonstrated to be an extremely useful probe of e.g. DNA conformational changes and DNA base flipping. The fluorescence character of the products 2–4, 821–823, does not exhibit fluorescence at all. This indicates that the conjugated systems in the products 2–4 and 1,5-N-ethenoguansine are different.

We were interested in comparing the fluorescence characteristics of the products with those of 2-aminoo-9-[(β-D-ribofuranosyl)purine (1). It is well known that an etheno bridge between N-1 and N6 of adenosine enhances the fluorescence intensity considerably in comparison to unmodified adenosine and therefore it was of interest to investigate the fluorescence properties of the similar products formed from 1. The results of the fluorescence measurements are shown in Tables 1 and 2 and Fig. 2. All in all, the fluorescence properties of the products differed quite a lot from those of compound 1. The quantum yields were considerably lower for the products, but the fluorescence lifetime of molecule 3 was equal and of molecule 4 it was more than five ns longer than for the starting material. When comparing the properties of the etheno derivatives 2–4 it was obvious that a methyl group in the five membered-ring slightly increased the fluorescence lifetime but did not affect the quantum yield, while an aldehyde group increased both the lifetime and the quantum yield considerably. Product 3 had the same emission maximum as 1, but all other compounds had their emission maxima at a longer wavelength. The emission maximum for compound 3 was also the same as for 1, for compound 2 at a slightly shorter wavelength (298 nm), for compound 4 at a 31 nm shorter (276 nm) and for the product 5 at a slightly longer (313 nm) wavelength. Therefore the Stokes shifts for all other products than for 3 were also larger. For example, the Stokes shift for compound 4 was 167 nm, but only 56 nm for the reference molecule 1.
While in ethenoadenosine the introduced ring-structure quenched it. It can also be noted that the furanosyl (purine) changed the formation of a dihydropyridine ring system. Therefore it must be concluded that the conjugated double bond system of these products is critically different. Consequently it seems that the reactivity of 2-amino-9-(β-D-ribofuranosyl)purine (1) towards these reagents, is much lower than that of adenosine. The reactions were studied and tested in many different reaction conditions applying different reagents. However, this topic is currently under investigation in our laboratory. The fluorescence properties of the products were determined and compared with the starting material 2-amino-9-(β-D-ribofuranosyl)purine. The fluorescence properties of the products 2-5 differed considerably from those of compound 1 and it can be concluded that the “etheno”- or dihydropyridine ring systems do not enhance the fluorescence characteristics of 2-amino-9-(β-D-ribofuranosyl)purine in the same way they do in the similar adenosine products. Therefore it must be concluded that the conjugated double bond system of these product molecules is critically different.

The NMR data were consistent with the structures. The linear (1, N2-etheno) rather than the angular (N2, 3-etheno) tricyclic structure was determined for compounds 2-4 from the 15N NMR measurements and the NOESY spectra.

LC-MS analysis of the reaction mixtures revealed the presence of low concentrations of products with the same masses as 2-4 indicating the formation of small amounts of the angular derivatives (Scheme 4).

Conclusions

Four 2-amino-9-(β-D-ribofuranosyl)purine (1) derivatives have been synthesised. The compounds 2-5 were formed in the reaction of compound 1 with chloroacetaldehyde (a), 2-chloropropanal (b), bromomalonaldehyde (c) and chloroacetaldehyde + malonaldehyde (d) (Scheme 1). The syntheses were straightforward but the yields were moderate and most of the starting materials were recovered unchanged in the reaction mixture. A 95% yield of etheno deoxyadenosine has been reported in the reaction of chloroacetaldehyde with deoxyadenosine.46 However, with 2-amino-9-(β-D-ribofuranosyl)purine (1) the yield was considerably lower, only 14%. For the other reactions b-d, the yields were slightly higher than for the adenosine reactions with the same reagents.45,51 It seems that the reactivity of 2-amino-9-(β-D-ribofuranosyl)purine (1) towards these reagents, is much lower than that of adenosine. The reactions were studied and tested in many different reaction conditions applying different reaction times, temperatures, reactant concentrations and solvents but no increase of the yields could be achieved. No definitive explanation to the unreactivity of the starting material (1) can yet be given. However, this topic is currently under investigation in our laboratory.

The fluorescence properties of the products were determined and compared with the starting material 2-amino-9-(β-D-ribofuranosyl)purine. The fluorescence properties of the products 2-5 differed considerably from those of compound 1 and it can be concluded that the “etheno”- or dihydropyridine ring systems do not enhance the fluorescence characteristics of 2-amino-9-(β-D-ribofuranosyl)purine in the same way they do in the similar adenosine products. Therefore it must be concluded that the conjugated double bond system of these product molecules is critically different.

Experimental

Chemicals

Chloroacetaldehyde diethyl acetal (99%) was obtained from Acros Organics, 2-chloropropionaldehyde dimethyl acetal (>96%) was obtained from Fluka AG and 1,1,3,3-tetra-

![Fig. 2](image-url) Normalised emission (a) and excitation (b) spectra of the molecules 1-5 in water at 23 °C.

The fluorescence measurement results showed, that the formation of a five membered ring to the 2-amino-9-(β-D-ribofuranosyl)purine changed the fluorescence properties dramatically and instead of enhancing the fluorescence the newly introduced ring-structure quenched it. It can also be noted that while ethenoadenosine the fluorescence is decreased by the presence of an aldehyde group on the etheno bridge,49 the aldehyde group in 4 increased the quantum yield. This suggests that the conjugation is more efficient in 4 than in the corresponding adenosine adduct.

For adenosine, the formation of a dihydropyridine ring system, has been reported to enhance fluorescence intensity significantly.46 Instead in 1, the dihydropyridine ring quenched the fluorescence. Both quantum yield and lifetime were lower than for the starting material 1.

<table>
<thead>
<tr>
<th>Molecule</th>
<th>Excitation λ_{max} (H\textsubscript{2}O)/nm</th>
<th>Emission λ_{max} (H\textsubscript{2}O)/nm</th>
<th>Quantum Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>307 ± 0.5</td>
<td>363 ± 0.8</td>
<td>0.607 ± 0.110</td>
</tr>
<tr>
<td>2</td>
<td>298 ± 0.5</td>
<td>465 ± 0.9</td>
<td>0.073 ± 0.013</td>
</tr>
<tr>
<td>3</td>
<td>306 ± 0.9</td>
<td>363 ± 0.9</td>
<td>0.068 ± 0.021</td>
</tr>
<tr>
<td>4</td>
<td>276 ± 0.1</td>
<td>437 ± 0.1</td>
<td>0.168 ± 0.048</td>
</tr>
<tr>
<td>5</td>
<td>313 ± 0.1</td>
<td>442 ± 0.5</td>
<td>0.178 ± 0.013</td>
</tr>
</tbody>
</table>

* The parameters are an average of at least three sets of experimental data. All experiments were performed using samples with an optical density < 0.05.

Table 1 Fluorescence parameters of the molecules in water at 23 °C

<table>
<thead>
<tr>
<th>Molecule</th>
<th>Lifetime τ/ns</th>
<th>χ^2</th>
<th>DW</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10.42 ± 0.21</td>
<td>1.120</td>
<td>1.60</td>
</tr>
<tr>
<td>2</td>
<td>7.94 ± 0.42</td>
<td>0.903</td>
<td>2.18</td>
</tr>
<tr>
<td>3</td>
<td>10.15 ± 0.47</td>
<td>1.081</td>
<td>0.99</td>
</tr>
<tr>
<td>4</td>
<td>16.07 ± 0.71</td>
<td>0.906</td>
<td>1.96</td>
</tr>
<tr>
<td>5</td>
<td>2.78 ± 0.06</td>
<td>1.068</td>
<td>1.83</td>
</tr>
</tbody>
</table>

* The parameters were calculated using non-linear squared analysis, and the goodness of fit was characterized using chi-squared (χ^2) and the Durbin–Watson parameter (DW).

Table 2 Fluorescence decay parameters of the molecules in water at 23 °C

![Image](image-url)
methoxypropane (99%) was obtained from Aldrich Chemical Co. 2-Amino-9-(β-D-riburafuranosyl)purine was synthesised according to known methods. The solvents for the synthesis were of analytical grade and for HPLC of commercial HPLC grade.

Spectroscopic and spectrometric methods

The 1H-, 13C-, 31P-, and 2D NMR spectra were recorded in DMSO at 30 °C on a JEOL JNM A 500 Fourier transform NMR spectrometer at 500.16, 125.78 and 50.69 MHz, respectively. 1H and 13C shifts were referenced against DMSO-d6 solvent signal 2.50 ppm and 39.51 ppm, respectively. The 1H NMR signal assignments were based on chemical shifts from the 2D H–H, H–C and H–N correlation spectroscopy data. The assignment of carbon signals was based on the same techniques and carbon–proton coupling constants. All nitrogen shifts were from HMQC spectra and were referenced externally to 90% nitromethane in CD3NO2 (0.00 ppm). All inverse detected HMBC- and HMQC experiments were recorded with an inverse 5 mm probe with z-axis pulse-field gradient capability. The 1H NMR spectra were analysed by PERCH software to perform complete spectral analyses.

The mass spectrometry analyses were performed on an Agilent 1100 Series LC/MSD Trap system equipped with an electrospray source and operated in the positive mode. Nitrogen was used as nebulizer gas (40 psi) and as drying gas (12 mL min⁻¹). The drying gas was heated to 350 °C. The capillary exit offset had a value of 71.2 V and skim 1 was set at 29.9 V. The maximum ion accumulation time was 50 ms and the target value was 50000. Scanning from m/z 100–500 was applied for the recording of the full mass spectrum.

The electron impact high-resolution mass spectra (EI) were recorded on Fisons ZABSpec-oaTOF instrument. The spectra were acquired using a direct insert probe scanning from 50 to 1500 amu and using electrons energised to 70 eV. Accurate mass measurements were performed using a peak matching technique with PFK as a reference substance at a resolution of 8000–10000 (at 10% peak height).

The UV spectra of the compounds were recorded with a Shimadzu UV-160A spectrophotometer.

The fluorimetric properties of the compounds were studied at 23 °C. Steady state fluorescence measurements were performed on a Photon Technology International (PTI) Quantamaster 1 spectrofluorimeter operating in the T-format. The emission wavelength scans were performed with the excitation wavelength set at 320 nm. Excitation wavelength scans were made with the emission monochromator set at 430 nm. In the steady-state measurements, the slit widths were kept at 5 nm. The water used in the experiments was purified by reverse osmosis followed by passage through a Millipore UF Plus water purification system, to yield a product with a resistance of at least 18.2 MΩcm⁻¹.

The fluorescence quantum yield of the compounds was estimated by comparison with the known quantum yield of a standard. The quantum yield standard was quinine sulfate (Fluka AG, Switzerland) in 0.1 M H2SO4 which is known to have a quantum yield of 0.53 ± 0.02. In order to avoid inner filter effects the optical density was kept below 0.05 in all measurements. The quantum yield was calculated according to eqn (1):

$$Q = Q_b (I/I_b) (OD_b/OD) (n^2/n^2_b)$$

where Q is the quantum yield, I is the integrated intensity OD is the optical density, and n is the refractive index. The subscript R refers to the reference fluorophore of known quantum yield.

The fluorescence decay parameters of the reaction products were determined using a PTI Timemaster instrument (N2 laser). In these experiments, the excitation wavelength was set to 337 nm, and the emission wavelength to 430 nm. The slit width was set to 5 nm. Analyses of the data were performed with the software supplied by PTI (Time Master 1.2).

Chromatographic methods

The HPLC analyses were made on a Kontron Instruments liquid chromatographic system consisting of a model 322 pump, a 440 diode array detector (UV), a Jasco FP-920 fluorescence detector, and a Kromasytem 2000 data handling program. The chromatographic separations were performed on an analytical 5 µm, 4 mm × 125 mm reversed phase C18 column (Hypersil BDS-C18, Hewlett Packard/Agilent). The column was eluted isocratically for 5 min with 0.01 M phosphate buffer (pH 7.1) and then with a gradient from 0 to 40% acetonitrile over the course of 25 min at a flow rate of 1 mL min⁻¹.

The products were isolated from the reaction mixtures on flash chromatography columns, packed with 40 µm C18 reversed-phase silica gel, preparative column. The products were eluted with an acetonitrile-water gradient.

Syntheses

Chloroacetaldehyde (a). A mixture of chloroacetaldehyde diethyl acetal (5.0 mL, 32 mmol), 1 M HCl (15 mL) and ethanol (5.0 mL) was stirred for 2 hours at 70 °C. The solution was stored at 20 °C and used for reactions without further treatment.

2-Chloropropionaldehyde (b). A mixture of 2-chloropropionaldehyde dimethyl acetal (5.0 mL, 34 mmol), 1.0 M HCl (15 mL) and ethanol (5.0 mL) was stirred for 2 hours at 70 °C. The solution was stored at 20 °C and used for reactions without further treatment.

Bromomalonaldehyde (c). This reagent was prepared by the method of Trofimenco.

2-Amino-9-(β-D-riburafuranosyl)purine (1). The preparation of the compound 1 was performed in two steps starting from guanosine. In the first step 6-thioguanosine was prepared according to a method by Kung and Jones. In the second step, 6-thioguanosine was reduced with Raney nickel according to a method developed by Fox et al. to yield the starting material 1.

3-(β-D-Riburafuranosyl)-imidazo-[1,2a]purine (2). Chloroacetaldehyde (8.5 mL, 11 mmol) was added to 1.0 g (3.7 mmol) of 1 dissolved in 0.5 M KH2PO4 buffer (15 mL, pH 4.5) and ethanol (10 mL). The reaction mixture was stirred at 37 °C for 22 h. The pH was kept at 4.5 by addition of 0.5 M Na2HPO4 (pH 9.0) buffer solution. The reaction was stopped and the reaction mixture was neutralised with NaHCO3 (aq.). The mixture was filtered and the product was isolated from the solid by preparative reverse phase chromatography. The fractions containing the product were combined and evaporated to give oil. The residue was precipitated from dry ethanol (151 mg, 14%) of pure 2 as yellow powder. λmax(H2O)/nm 229 and 294 (ε/dm³ mol⁻¹ cm⁻¹ 26600 and 5700); λmax(H2O)/nm 204 and 2820; m/z (EI) 291.0966 (M⁺, C4H5N6O4 requires 291.0967), 159 (100%), δ6(500.16 MHz; DMSO) 3.61 (1 H, ddd, J3,3,2=11.9, J5,5=4.8, H-5'b), 3.73 (1 H, ddd, J3,3,2=3.6, H-5'a), 4.00 (1 H, ddd, J2,2=3.9, J2,1=3.7, H-4'), 4.22 (1 H, ddd, J2,2=4.1, J2,1=4.8, H-3'), 4.65 (1 H, ddd, J2,2=3.3, J2,1=4.3, H-2'), 5.11 (1 H, t, J5,5=11.9, H-5), 5.13 (1 H, dd, d3,3=3.6, J5,5=3.9, H-3'), 6.00 (1 H, d, d3,3=4.1, H-2), 7.68 (1 H, d, d3,3=7.6, J5,5=5.3, H-6'), 7.95 (1 H, d, d3,3=15.5, J5,5=1.5, H-7), 8.79 (1 H, d, d3,3=7.3, J5,5=1.5, H-8'), 9.72 (1 H, d, d3,3=9.1, J5,5=1.5, H-9), 9.85 (1 H, d, d3,3=9.1, J5,5=1.5, H-9), 11.74 (1 H, d, d3,3=15.5, J5,5=1.5, H-9), 12.60 (1 H, d, d3,3=15.5, J5,5=1.5, H-9).

110.65 (dd, J = 12.0, J = 5.0, H-5b), 3.75 (1 H, d, J = 5.0, H-5a), 5.56 (1 H, d, J = 5.0, H-5e), 4.62 (1 H, dd, J = 4.2, J = 3.4, H-4a), 2.11 (1 H, dd, J = 4.2, J = 3.7, J = 3.7, J = 3.7, J = 3.7, H-3a, H-3b, H-3c, H-3d, H-3e), 6.44 (1 H, ddd, J = 4.2, J = 3.7, H-2a, H-2b, H-2c, H-2d, H-2e), 5.10 (1 H, t, J = 4.4, H), 5.22 (1 H, d, J = 3.0, H), 5.61 (1 H, d, J = 2.0, H), 5.98 (1 H, d, J = 5.6, H-1), 7.44 (1 H, d, J = 4.3, H-9), 5.26 (1 H, s, 5-CH3), 4.64 (1 H, ddd, J = 4.2, J = 3.7, H-2a, H-2b, H-2c, H-2d, H-2e), 8.61 (1 H, s, H-8), 9.06 (1 H, s, H-6), 9.56 (1 H, s, H-9) and 9.57 (1 H, s, H-5a). δ125.78 MHz; DMSO) 21,702 (δ124.51 MHz; DMSO) 19,830, 21,702 (δ124.51 MHz; DMSO) 14,197, 21,702 (δ124.51 MHz; DMSO) 15,668, 21,702 (δ124.51 MHz; DMSO) 17,158, 21,702 (δ124.51 MHz; DMSO) 20,654, 21,702 (δ124.51 MHz; DMSO) 23,157, 21,702 (δ124.51 MHz; DMSO) 25,662, 21,702 (δ124.51 MHz; DMSO) 28,171.

References

15 Unpublished results Kronberg et al.