3.1 Separation and entropy
Separation process and entropy /1

- Separation processes involve de-mixing of species or phases, in thermodynamic sense resulting in a decrease of the total entropy of these
- \sum Entropy of components or phases < Entropy of mix
- One way of accomplishing a separation is to create more phases; Gibbs’ phase rule gives for the degrees of freedom, f, for a system of p phases and n components: $f = n + 2 - p$. $f\uparrow$ gives $\Delta S\uparrow$; $f\downarrow$ gives $\Delta S\downarrow$.
- A new phase can be created by 1) adding a new component (absorption/desorption, extraction), or 2) by adding or removing energy (e.g. heat) (distillation, crystallisation)
- Creating an "un-equilibrium" gives rise to a separation (or a chemical reaction) if $\Delta G = \Delta H - T \cdot \Delta S < 0$, or $\Delta S > \Delta H / T$

Separation process and entropy /2

Steady-state mass balance, 1st Law, 2nd Law:

$m_{\text{mix}} = m_A + m_B$
$m_{\text{mix}} \cdot h_{\text{mix}} + Q_{\text{in}} = m_A \cdot h_A + m_B \cdot h_B + Q_{\text{out}}$

$\frac{Q_{\text{out}}}{T_{\text{out}}} + m_A \cdot s_A + m_B \cdot s_B \geq \frac{Q_{\text{in}}}{T_{\text{in}}} + m_{\text{mix}} \cdot s_{\text{mix}}$

$\Rightarrow \frac{Q_{\text{out}}}{T_{\text{out}}} - \frac{Q_{\text{in}}}{T_{\text{in}}} \geq m_{\text{mix}} \cdot s_{\text{mix}} - m_A \cdot s_A - m_B \cdot s_B$

Distillation

Crystallisation
Separation process and entropy /3

- Clearly, some entropy must be produced to
 1) compensate for $\Delta S < 0$ resulting from the separation, and
 2) create some driving force $\Delta G < 0$, $\Delta S > \Delta H/T$.

- Proper engineering requires minimisation of this entropy production ΔS and the exergy losses $T^\circ \cdot \Delta S$, and balancing this against economical considerations.

- It was found that a uniform production of entropy is preferable: the equipartitioning principle (TK87, B97, SAKS04) – see also macroscopic organisation in natural processes!

- For example, for a heat exchanger this implies that the driving force $\Delta(1/T) = \text{constant}$.

- It can be extended to considering stable, non-equilibrium states $S > S_{\text{min}}$, with stability criterion $dS_{\text{gen}}/dt < 0$.

Separation process and entropy /4

- Example taken from TK87
3.2 Binary Distillation I
(the McCabe-Thiele procedure)

Assumed pre-knowledge: Continuous distillation
see course 424302 Massöverföring & separationsteknik, #12
or re-wrap course 424102 Principles of process engineering
(which summarises courses 424101, 424302 and 424300)
Continuous distillation (binary) /1

- Separating a mixture of 2 components A and B, with A more volatile
- Liquid for absorption section produced by condensing some top product
- Gas for stripping section produced by boiling some bottom product

Mass balance and equilibrium: absorption

mass balance: \(V \cdot y_i + L \cdot x_i = V \cdot y_{i+1} + L \cdot x_{i-1} \)

\[y_i = Kx_i \]

slope \(L/V \)
Mass balance and equilibrium: desorption / stripping

\[y_i = Kx_i \]

\[\text{mass balance: } V \cdot y_i + L \cdot x_i = V \cdot y_{i+1} + L \cdot x_{i-1} \]
\[\rightarrow \text{ working line } y_{i+1} - y_i = \left(\frac{L}{V} \right) (x_{i-1} - x_i) \]

Continuous distillation (binary) /2

- Roughly equimolar exchange:
 1 mol A liquid → gas
 ↔ 1 mol B gas → liquid

- As a result: Gas and liquid streams ~ constant in each section:
 - L and V in top section, L' and V' in bottom section

- Feed enters where it is similar to the mixture inside
Continuous distillation

- Some general considerations and assumptions:
 - The equimolar exchange \(A \leftrightarrow B \) requires balanced energy exchange as well: vaporisation heats of \(A \) and \(B \) should be roughly the same
 - **Pressure** and the **temperature ranges** must be chosen:
 - Below the critical pressures and temperatures of the components
 - The components must be thermally stable (for hydrocarbon fractions of crude oil: below 300 ~ 350°C)
 - The temperature at the top of the column should preferably be > 40°C, allowing for heat transfer with surrounding air or water
 - **Equilibrium data is needed**, + data for feed and products specifications

→ The necessary gas and liquid streams, the number of stages and heat consumption can be calculated

- A simple procedure based on local equilibrium and mass balances was suggested by McCabe and Thiele

Equilibrium data

Example:

\(C_3 \) – \(iC_4 \)

- **Pressures < critical**
 - Pressures allowable for \(C_3 \) – \(iC_4 \): \(p < 37 \text{ bar} \)

- 37 bar boiling points
 - 85 - 140°C: stability OK

Raoults law:

\[
yp_{\text{total}} = xp^°
\]

\[
K = \frac{y}{x} = \frac{p^°}{p_{\text{total}}}
\]
Equilibrium data

Example:

\[C_3 - iC_4 / 2 \]

Chose 40°C as the temperature at the condenser.

At \(T_{min} = 40°C \), the vapour pressure of the more volatile component which is \(C_3 \) = 14 bar \(\rightarrow p \geq 14 \) bar

Then \(T_{boil} \approx 81°C \) for \(iC_4 \)

Binary distillation, McCabe-Thiele /1

- The McCabe-Thiele \(x, y \) diagram procedure for continuous binary distillation is **limited** to cases where the vapour and liquid mass flows are \(\approx \) **constant** in both the top and bottom section of the column.

- This requires that the **vaporisation / condensation heats** for the two components are \(\approx \) **the same**, and that mixing heat effects are negligible.

- For example \(\text{EtOH/H}_2\text{O}: \Delta_{vap} h(\text{EtOH}) \approx \Delta_{vap} h(\text{H}_2\text{O}) \approx 40 \text{ kJ/mol} \)
 \(\rightarrow \) elementary courses (e.g. \(\text{ÅA424302, Z12} \))

Pic: WK92
Binary distillation, McCabe-Thiele /2

- $q =$ fraction of feed that gives liquid on the feeding tray: $L' = L + q \cdot F$
- $F \cdot q = \Delta L$ and $F \cdot (1-q) = \Delta V$
- q is related to the energy needed to convert the feed completely into vapour. With enthalpies H for saturated liquid and saturated gas it is found that:

$$q = \frac{H_{G,\text{sat}} - H_F}{H_{G,\text{sat}} - H_{L,\text{sat}}}$$

Binary distillation, McCabe-Thiele /3

- The McCabe-Thiele x,y diagram procedure is thus based on mass balances (giving straight operating lines) and chemical equilibrium data.
- If this method cannot be used, a graphical method based on enthalpy – composition (h,x or h,ξ) diagrams as given by Ponchon – de Savarit can be used, based on local equilibrium, mass balances and energy balances.

→ elementary courses (e.g. ÅA424302, Z12)
Restrictions McCabe-Thiele method

- Molar heats of vaporisation should not differ more than ~10%
- Heats of dissolution or mixing are negligible
- Relative volatilities should be $1.3 < \alpha < 5$
- Reflux ratio’s ($\rightarrow L/V$) should be $R > 1.1 \cdot R_{\text{min}}$
- Number of trays $N \ll 50$ preferably
- Otherwise: operating lines are presumably not straight
 use a more exact method that includes an energy balance

Source: CR83
Mixing heat for binary mixtures

For this mixing process:
\[h = \xi \cdot h_a + (1-\xi) \cdot h_b + q_{\text{mix}} \]

with mixing heat \(q_{\text{mix}} \) to keep temperature constant

Mixing heat data can be used to produce \(h, x \) or \(h, \xi \) diagrams

\[\xi = \text{mass fraction for the most volatile compound} \]
\[x = \text{molar fraction for the most volatile compound} \]

With molar masses \(M_a \) and \(M_b \):
\[x = \frac{1}{1 + \frac{1 - \xi}{\xi} \frac{M_b}{M_a}} \]
\[\xi = \frac{1}{1 + \frac{1 - x}{x} \frac{M_a}{M_b}} \]

Mixing heat, \(h, \xi \) diagram /1

↑ Mixing heat data for NH\(_3\)-H\(_2\)O and for EtOH-H\(_2\)O (liq)

Schematic \(h, x \) or \(h, \xi \) diagram → for three temperatures (\(t_1, t_2, t_3 \))
Mixing heat, h, ξ diagram /2

- Determination of heat of mixing, q_{mix}, versus composition, ξ: a boiling liquid mixture (mass m, composition ξ_f, enthalpy h_f) is fed into a calorimeter; a small amount of heat dq gives a small amount of vapour, dm (composition ξ_d, enthalpy h_d)

- Mass balance, heat balance:

\[
m \xi_f = dm \xi_d + (m - dm)(\xi_f + d\xi_f)
\]

\[
m h_f + dq = dm h_d + (m - dm)(h_f + dh_f)
\]

gives (eliminate m) $q_{\text{mix}} = dq/dm = h_d - h_f - (\xi_d - \xi_f) \frac{dh_f}{d\xi_f}$

Mixing heat, h, ξ diagram /3

- Construction of condensation line from boiling line, heat of vaporisation and heat of mixing
- For point P, which demixes into liquid F and gas D, the relative amounts are $G/L = FP/PD$ (lever rule)

Schematic h, ξ diagram:
- Condensation line c
- Boiling line b
- Isotherms i

Pics: B01
s,ξ diagram

- For 2nd Law analysis, exergy analysis or for tracking down irreversibilities in mixture applications (for example mixtures of refrigerants) s,ξ or s,x diagrams may be used.

- Note that during adiabatic mixing \(h_{\text{mix}} = h_a + h_b \), but \(s_{\text{mix}} = s_a + s_b + \Delta s_{\text{mix}} \)

\[s, x \text{ and } \Delta s_{\text{mix}} \text{ for two ideal gases} \]

3.4 Flash vaporisation
Flash vaporisation, h,x diagram /1

- Consider a flash vaporisation process, in which a binary liquid at temperature T_0, pressure p_0 is brought to a lower pressure p_1 using a throttling valve. Temperature drops to T_1. Part of the liquid vaporises, giving a vapour that is more rich in the more volatile component.

- Mass balance: $F = G + L$
- Mass balance volatile component: $x_F \cdot F = y \cdot G + x \cdot L$
- Heat balance: $h_F \cdot F = h_G \cdot G + h_L \cdot L$, with heat of vaporisation $\Delta_{vap} h = h_G - h_L$ at T_0.

Flash vaporisation, h,x diagram /2

- Initially, at p_0 the feed point A with $x = x_F$ is in the liquid region of the h,x diagram.
- After the pressure reduction to p_1, point A lies in the 2-phase region, giving liquid (L) C + gas (G) B.
- Amount ratio G/L equals $= \frac{CA}{AB}$, or $\frac{G}{L} = \frac{x_F - x}{y - x_F} = \frac{h_F - h_L}{h_G - h_F}$.
Flash vaporisation, example /1

An enthalpy versus concentration diagram for the system ethanol water at 1 atm total pressure is given in Figure 2.11. A mixture containing 60 wt percent ethanol and 40 wt percent water is received with an enthalpy of 400 Btu/lb at high pressure (referred to the same bases as Figure 2-11), and is expanded adiabatically to a pressure of 1 atm. Find the product compositions and flow rates, and the flash temperature.

\[
1 \text{ BTU} = 1055.06 \text{ J} \quad 100 \text{ BTU/lb} = 2.326 \text{ kJ/kg}
\]

\[
220^\circ F = 104^\circ C \quad 170^\circ F = 77^\circ C
\]

\[\text{K71- Fig 2.11} \quad \text{K71- Fig 2.12}\]

\[\text{Pics: K71}\]

Flash vaporisation, example /2

Equilibrium data for this system are shown in Figure 2.12. We know the point representing \((h_x, z_x) \) on Figure 2-11, and we know that the straight-line connection \((H_x, y_x) \) and \((h_x, x_x) \) must pass through that point. Since we have an equilibrium flash, we know that the product composition, enthalpies, and temperature must lie on the saturation curves of Figures 2-11 and 2-12. By trial and error we seek a \(y \) and \(x \) pair from Figure 2-12 which will provide a straight line through the known point on Figure 2-11. The result is \(y_x = 0.76, x_x = 0.425, \) and \(T = 181.4^\circ F \). The product flow rates then come from an application of the lever rule to either Figure 2-11 or Figure 2-12:

\[
L = 0.76 - 0.60 \quad V = 0.60 - 0.425 \quad W = 0.91
\]

\[\text{Lever rule – see for example:}\]

http://www.doitpoms.ac.uk/tlplib/phase-diagrams/lever.php

\[\text{Pics: K71}\]
3.5 Binary Distillation II
(the Ponchon-Savarit method)

Ponchon-Savarit method /1

- Continuous distillation
- Feed \(F(\text{kg/s}), x_f \) (kg/kg)
- Top product \(D, x_d \)
- Bottom product \(W, x_w \)
- Upward vapour flows \(V \) (kg/s), downward liquid flows \(L \) (kg/s)
- Liquid mass fractions \(x \), vapour mass fractions \(y \)
- Reboiler heat input \(Q_B \) (kW), condenser heat output \(Q_C \) (kW)

Top section I, index \(n \) (downwards)
Bottom section II, index \(m \) (downwards)
Ponchon-Savarit method /2

- H^L and H^V are enthalpies of liquid and vapour streams (kJ/kg)
- Mass balances top section stages (total, and for the most volatile species of the two)

\[
V_n = L_{n-1} + D
\]
\[
V_n - L_{n-1} = D
\]
\[
V_n y_n = L_{n-1} x_{n-1} + D x_d
\]
\[
V_n y_n - L_{n-1} x_{n-1} = D x_d
\]

Ponchon-Savarit method /3

- Heat balances (top section)

\[
V_n H^V_n = L_{n-1} H^L_{n-1} + D H^L_d + Q_C
\]
\[
V_n H^V_n - L_{n-1} H^L_{n-1} = D H^L_d + Q_C
\]

- $H^L_d = H$ of liquid D ($x = x_d$)

- Constant $H'_d = H^L_d + Q_C/D$:

\[
V_n H^V_n = L_{n-1} H^L_{n-1} + D H'_d
\]
\[
V_n H^V_n - L_{n-1} H^L_{n-1} = D H'_d
\]
Ponchon-Savarit method /4

- From the mass balances *)
 \[\frac{L_{n-1}}{D} = \frac{x_d - y_n}{y_n - x_{n-1}} \]

- From mass balance *) and heat balances **)
 \[\frac{L_{n-1}}{D} = \frac{H_d' - H_n^V}{H_n^V - H_{n-1}^L} \]

\[\rightarrow \]

\[\frac{H_d' - H_n^V}{H_n^V - H_{n-1}^L} = \frac{x_d - y_n}{y_n - x_{n-1}} \]

Functions \(y_n(x_{n-1}) \) are all lines that go through point (pole) \(N = (x_d', H_d') \) in the \((x,H)\) plot.

Ponchon-Savarit method /5

- The lines \(y_n(x_{n-1}) \) can be put in the \(h,x \) or \(h,\xi \) diagram (see next slide).
- Similarly, mass and heat balances for the bottom section:
 \[V_m + W = L_{m-1} \]
 \[-V_m + L_{m-1} = W \]
 \[V_m y_m + W x_w = L_{m-1} x_{m-1} \]
 \[-V_m y_m + L_{m-1} x_{m-1} = W x_w \]
 \[V_m H_m^V + W H_w^L = L_{m-1} H_{m-1}^L + Q_B \]
 \[-V_m H_m^V + L_{m-1} H_m^L = WH_w^L - Q_B \]
Ponchon-Savarit method /6

- \(H_{w}^{L} = H \) of liquid \(W \)
 \((x = x_{w}) \)
- Constant
 \(H'_{w} = H_{w}^{L} - Q_{B}/W \)
- This then gives
 \[-VH_{m}^{V} + L_{m-1}H_{m-1}^{L} = WH'_{w} \]

"leaving" system via bottom:
\(W \cdot H_{w}^{L} - Q_{B} \)

Functions \(y_{m}(x_{m-1}) \), all lines go through point (pole)
\(M = (x_{w}, H'_{w}) \) in \((x,H)\) plot

Ponchon-Savarit method /7

- A stream \(N \) can be visualised with composition \(x_{d} \), enthalpy \(H'_{d} \), mass \(V_{n} - L_{n-1} \)
- Similarly, \(M \) can be visualised as a stream with composition \(x_{w} \), enthalpy \(H'_{w} \), mass \(L_{m-1} - V_{m} \)
- Then also: \(F = M + N \), and \(F \cdot x_{F} = M \cdot x_{w} + N \cdot x_{d} \) Pic: CR83
Ponchon-Savarit method /8

- The necessary number of theoretical stages can be determined graphically as shown →
- Feed point F is shown on the boiling line (here, q = 1)
- \(V_1 \) is vapour from first plate, \(L_1 \) is liquid from first plate to second plate, et c.

Here, 7 theoretical stages needed. Pic: CR83

Ponchon-Savarit method /9

- The heat removed in the condenser per unit mass \(D \) is \(q_c = Q_c / D \).
- Lowering \(N \) → \(N' \) means that more stages are needed
- At \(N \) → \(N_m \) the number of stages → \(\infty \)

Here, 7 theoretical stages needed. Pic: CR83
Ponchon-Savarit method /10

- Using $q_c = Q_c/D$ and

$$\frac{H'_d - H'_n}{H'_n - H'_{n-1}} = \frac{x_d - y_n}{y_n - y_{n-1}}$$

the minimum heat requirements can be found:

$$\frac{H'_{n-1} + q_c - H'_n}{H'_n - H'_{n-1}} = \frac{x_d - y_n}{y_n - x_{n-1}}$$

$$q_c = (H'_n - H'_{n-1}) \left(\frac{x_d - y_n}{y_n - x_{n-1}} \right) + H'_n - H'_d$$

$$(q_c)_{\text{min}} = (H'_f - H'_{f-1}) \left(\frac{x_d - y_f}{y_f - x_f} \right) + H'_f - H'_d$$

Increasing the reflux ratio requires more heat to be removed, → point N upwards, reducing the number of stages

Pic: CR83

Ponchon-Savarit method Example /1

It is required to separate 1 kg/s (3.6 tonnes/h) of a solution of ammonia in water, containing 30 per cent by mass of ammonia, to give a top product of 99.5 per cent purity and a weak solution containing 10 per cent by mass of ammonia.

Calculate the heat required in the boiler and the heat to be rejected in the condenser, assuming a reflux 8 per cent in excess of the minimum and a column pressure of 1000 kN/m². The plates may be assumed to have an ideal efficiency of 60 per cent.

Mass balances

$$D + W = 1.0$$

$$0.995D + 0.1W = (1.0 \times 0.3)$$

$$D = 0.22 \text{ kg/s}$$

$$W = 0.78 \text{ kg/s}$$

Source: CR83
Ponchon-Savarit method Example /2

\[h, \xi \text{ diagram} \]
\[\text{NH}_3-\text{H}_2\text{O} \]
\[1.013 \text{ MPa} = 10 \text{ atm} \]

Source: CR83

Ponchon-Savarit method Example /3

\[N_m \text{ for minimum reflux is found by drawing a tie-line through F, representing the feed, to cut the line } x = 0.995 \text{ at } N_m. \]

\[\gamma \]
\[\text{The minimum reflux ratio, } R_m = \frac{\text{length } N_mA}{\text{length } AL} = \frac{(1952 - 1547)}{(1547 - 295)} = 0.323 \]

Since the actual reflux is 8 per cent above the minimum, then:

\[\gamma \]
\[NA = 1.08 \times N_mA = 1.08 \times 405 = 437 \]

Point N therefore has an ordinate of \((437 + 1547) = 1984\) and an abscissa of 0.995.

Point M is found by drawing NF to cut the line \(x = 0.10\), through W, at M.

The number of theoretical plates is found, as on the diagram, to be 5+.

The number of plates to be provided = \((5/0.6) = 8.33\), say 9.

The feed is introduced just below the third ideal plate from the top, or just below the fifth actual plate.

\[\gamma \]
\[\text{The heat input at the boiler per unit mass of bottom product is:} \]
\[\frac{Q_b}{W} = 582 - (-209) = 791 \]

Heat input to boiler = \((791 \times 0.78) = 617 \text{ kW}\)

Condenser duty = \(\text{length } NL \times D\)

\[= (1984 - 296) \times 0.22 = 372 \text{ kW} \]

Source: CR83
3.6 Ideal distillation column analysis

Analysis of ideal column /1

- Exergy analysis shows that the minimum work for separation of 1 mol of mixture equals
 \[w_{\text{min}} = \Delta \text{ex} = T^\circ \cdot \Delta s \]
- For distillation with reboiler heat \(Q_{\text{in}} \) and condenser heat \(Q_{\text{out}} \), the exergy loss \(-\Delta \text{Ex}\) can be approximated as
 \[-\Delta \text{Ex} = Q_{\text{in}} \cdot T^\circ \cdot \left(\frac{1}{T_{\text{top}}} - \frac{1}{T_{\text{bottom}}} \right) \]
 (if \(H_F \approx H_B + H_D \))

Thus, the separation is accomplished by degrading \(Q_{\text{in}} \) at \(T_{\text{in}} \) to \(Q_{\text{out}} (= Q_{\text{in}}) \) at \(T_{\text{out}} < T_{\text{in}} \)

Pic: SAKS04
Analysis of ideal column /2

- The **Clausius Clapeyron** expression for phase transitions based on the slope of the two-phase co-existence (boiling) curve in a \(p-T \) diagram,

\[
\frac{dp}{dT} = \frac{\Delta S}{\Delta V} = \frac{\Delta v_{ap}H}{(T\Delta V)}
\]
gives for ideal gases:

\[
\left(\frac{dp}{p} \right)_{sat} = \frac{\Delta v_{ap}H}{R} \cdot \frac{dT}{T^2} \Rightarrow \ln \frac{p_{sat,1}}{p_{sat,2}} = -\frac{\Delta v_{ap}H}{R} \left(\frac{1}{T_1} - \frac{1}{T_2} \right)
\]

- Also, for an ideal mixture the relative volatility for two similar* components is

\[
\alpha_{12} = \frac{p_{sat,1}}{p_{sat,2}}
\]

* Chemically similar, boiling points not too far apart, \(\alpha \sim \mathcal{O}(1) \)

Analysis of ideal column /3

- This then gives, for the distillation temperature range \((T_{top}, T_{bottom}) \):

\[
\ln \alpha_{12} = -\frac{\Delta v_{ap}H}{R} \left(\frac{1}{T_{bottom}} - \frac{1}{T_{top}} \right)
\]

- which if \(\alpha \sim 1 \), and using \(\ln(1+z) \approx z \) if \(z \ll 1 \), it simplifies to:

\[
\alpha_{12} - 1 = -\frac{\Delta v_{ap}H}{R} \left(\frac{1}{T_{bottom}} - \frac{1}{T_{top}} \right)
\]

This requires that
- heat \(Q_{in} \) is supplied using a Carnot heat pump
- heat \(Q_{out} \) is converted into work in a Carnot process,
- minimum reflux is used

Pic: SAKS04
Analysis of ideal column /4

- Assume a propane C3, propene C3 = distillation with $x_F = \frac{1}{2}$, $q = 1$, $B/F = D/F = \frac{1}{2}$ (mol/s)/(mol/s)

- **Note**: for this equimolar mix, Δs_{mix} is at its maximum (if ideal)

- Then per mole of feed, $L/F = r \cdot D/F = \frac{1}{2} \cdot r$, $(r = \text{reflux ratio}^* = L/D)$ above the feed, $L/F = (\frac{1}{2} \cdot r + 1)$ below the feed, and $V/F = \frac{1}{2} \cdot (r + 1)$ in the whole column.

- Then the heat input at the reboiler is equal to $Q_{in}/F = V/F \cdot \Delta_{vap}H = \frac{1}{2} \cdot (r+1) \cdot \Delta_{vap}H \approx Q_{out}/F^*$

- Using "r" to distinguish it from gas constant R.

Analysis of ideal column /5

- The **minimum work** required to separate the mixture can be found by considering a heat pump between T_{out} and T_{in} – see Figure – and exergy analysis gives (per mole feed): $W_{sep} = -R \cdot T^o \cdot \sum x_i \cdot \ln x_i = R \cdot T^o \cdot \ln 2$ for an equimolar mixture

- This can be used to define the minimum reflux ratio r_{min}:

 $$
 W_{sep}^* = -R \cdot T^o \cdot \sum_i x_i \cdot \ln x_i = W_{min}^* = \frac{Q_{in}^*}{F} \cdot T^o \left(\frac{1}{T_{top}} - \frac{1}{T_{bottom}} \right)
 $$

 $$
 \Rightarrow \frac{Q_{in}^*}{F} = \frac{1}{2} \cdot (r_{min} + 1) \cdot \Delta_{vap}H \Rightarrow \ r_{min} = \frac{2 \ln 2}{\ln \alpha_{12}} - 1 \quad (\alpha < 4 !)
 $$

 Pic: SAKS04

100% efficient! (reversible)
3.7 Real distillation column analysis I: efficiency

Analysis of real column /1

- What will be the **efficiency** of a real column for this case?
- Heat transfer requires temperature differences!
- Q_{in} is supplied at 377K, Q_{out} goes out at 298K
- The minimum heat input for the separation is

 $Q_{min} / F = \frac{1}{2} \cdot (r_{min} + 1) \cdot \Delta_{vap} H$ with $r_{min} = 9.64$ ($\alpha_{12} \approx 1.14$), per mole feed
- Deviations from ideal thermodynamics $\rightarrow r_{real} = 15.9$ ($\alpha_{12} \approx 1.09$)

 $Q_{real} / F = \frac{1}{2} \cdot (r_{real} + 1) \cdot \Delta_{vap} H$

$r_{real} / r_{min} = 1.65$

Pic: SAKS04
Analysis of real column /2

- Bottom section $\Delta T = 46$ K, top section $\Delta T = 22$ K
- The total thermodynamic efficiency of the column is calculated as:

\[
\eta_{\text{overall}} = \frac{Q^{\text{min}} \Delta \left(\frac{1}{T}\right)_{\text{column}}}{Q_{\text{in}} \left[\Delta \left(\frac{1}{T}\right)_{\text{bottom}} + \Delta \left(\frac{1}{T}\right)_{\text{column}} + \Delta \left(\frac{1}{T}\right)_{\text{top}}\right] T_0}
\]

which gives $\eta_{\text{overall}} = 0.093 = 9.3\%$

- The main sources of the inefficiency are the driving forces $\Delta (1/T)$ in reboiler and condenser
- The ratio $Q_{\text{in}}^{\text{min}}/Q_{\text{in}}^{\text{real}} = 0.63$ reflects exergy losses inside the column

Analysis of real column /3

- The amount of exergy (work) lost in the column + the exergy used for the separation = the difference between the exergies of the reboiler heat and the condenser heat
- For the minimum work (exergy) needed it was shown that

\[
W_{\text{in}}^{\text{min}} = Q_{\text{in}}^{\text{min}} T_0 \left(\frac{1}{T_t} - \frac{1}{T_b}\right)
\]

so that the work (exergy) lost in the column is equal to

\[
W_{\text{lost}} = Q_{\text{in}}^{\text{real}} T_0 \left(\frac{1}{T_t} - \frac{1}{T_b}\right) - Q_{\text{in}}^{\text{min}} T_0 \left(\frac{1}{T_t} - \frac{1}{T_b}\right)
\]

→ see Table on next slide
Analysis of real column /4

- Efficiency of the distillation column: summary

<table>
<thead>
<tr>
<th></th>
<th>Exergy in</th>
<th>Exergy out</th>
<th>Exergy lost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reboiler</td>
<td>$Q_{\text{real}}^\text{in} \left(1 - \frac{T_0}{T_R}\right)$</td>
<td>$Q_{\text{real}}^\text{in} \left(1 - \frac{T_0}{T_b}\right)$</td>
<td>$Q_{\text{real}}^\text{in} T_0 \left(\frac{1}{T_b} - \frac{1}{T_R}\right)$</td>
</tr>
<tr>
<td>Column</td>
<td>$Q_{\text{real}}^\text{in} \left(1 - \frac{T_0}{T_b}\right)$</td>
<td>$Q_{\text{real}}^\text{in} \left(1 - \frac{T_0}{T_T}\right)$</td>
<td>$(Q_{\text{real}}^\text{in} - Q_{\text{min}}^\text{in}) T_0 \left(\frac{1}{T_T} - \frac{1}{T_b}\right)$</td>
</tr>
<tr>
<td>Condenser</td>
<td>$Q_{\text{real}}^\text{in} \left(1 - \frac{T_0}{T_T}\right)$</td>
<td>$Q_{\text{real}}^\text{in} \left(1 - \frac{T_0}{T_0}\right)$</td>
<td>$Q_{\text{real}}^\text{in} T_0 \left(\frac{1}{T_0} - \frac{1}{T_T}\right)$</td>
</tr>
</tbody>
</table>

= Previous table, rated by normalising with $Q_{\text{real}}^\text{in} \left(1 - \frac{T_0}{T_R}\right)$

Pic: SAKS04

Analysis of real column /5

- Efficiency of the distillation column: summary

<table>
<thead>
<tr>
<th></th>
<th>Exergy in</th>
<th>Exergy out</th>
<th>Exergy lost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reboiler</td>
<td>$Q_{\text{real}}^\text{in} \left(1 - \frac{T_0}{T_R}\right)$</td>
<td>$Q_{\text{real}}^\text{in} \left(1 - \frac{T_0}{T_R}\right)$</td>
<td>$Q_{\text{real}}^\text{in} T_0 \left(\frac{1}{T_b} - \frac{1}{T_R}\right)$</td>
</tr>
<tr>
<td>Column</td>
<td>$Q_{\text{real}}^\text{in} \left(1 - \frac{T_0}{T_b}\right)$</td>
<td>$Q_{\text{real}}^\text{in} \left(1 - \frac{T_0}{T_T}\right)$</td>
<td>$(Q_{\text{real}}^\text{in} - Q_{\text{min}}^\text{in}) T_0 \left(\frac{1}{T_T} - \frac{1}{T_b}\right)$</td>
</tr>
<tr>
<td>Condenser</td>
<td>$Q_{\text{real}}^\text{in} \left(1 - \frac{T_0}{T_T}\right)$</td>
<td>$Q_{\text{real}}^\text{in} \left(1 - \frac{T_0}{T_0}\right)$</td>
<td>$Q_{\text{real}}^\text{in} T_0 \left(\frac{1}{T_0} - \frac{1}{T_T}\right)$</td>
</tr>
</tbody>
</table>

= Previous table, rated by normalising with $Q_{\text{real}}^\text{in} \left(1 - \frac{T_0}{T_R}\right)$

Pic: SAKS04
Binary distillation efficiency: overview

Maximum efficiency:

\[E_{\text{max}} = \frac{W_{\text{min}}}{Q_{\text{min}}} \]

\[= -RT \left(x \ln x + (1 - x) \ln(1 - x) \right) \]

\[\frac{\Delta H_{\text{vap}} \left(\frac{1}{x - 1 + x} \right)}{\Delta H_{\text{vap}}} \]

where \(x \) = mole fraction of the more volatile component

Reboiler heat duty:

\[Q_{\text{REB}} = \Delta H_{\text{vap}} D (r + 1) \]

where \(r \) = reflux ratio, \(D \) = distillate product flow

For \(Q_{\text{REB}} \approx Q_{\text{COND}} \):

\[W_{\text{heat, dist}} = E_{\text{XREB}} - E_{\text{XCOND}} \]

\[= Q_{\text{REB}} T_a \left(\frac{1}{T_{\text{COND}}} - \frac{1}{T_{\text{REB}}} \right) \]

Reboiler duty exergy:

\[E_{\text{XREB}} = Q_{\text{REB}} \left(1 - \frac{T_a}{T_{\text{Bottoms}} + \Delta T} \right) \]

3.8 Real distillation column analysis II: exergy analysis
Exergy analysis /1

- An analysis can also be made based on exergy flows:
 \[\text{Ex}_F + \text{Ex}_{Q1} = \text{Ex}_B + \text{Ex}_{Q2} + \text{Ex}_D + \text{Ex}_{\text{lost}} \]

- **Note** that still no enthalpy of mixing is considered, and ideal mixing entropy \(-R \cdot \sum x \cdot \ln x\).

- Flowsheeting programs (should) give values for H’s, S’s, and Q’s, making it easy to calculate exergy streams.

- No chemistry → physical exergy is sufficient!

Exergy analysis /2

- Exergy balance for the equimolar C\(_3\)/C\(_3\) = distillation

 * **reversible case:**
 \[\frac{1}{2} \left((h_{C_3} + h_{C_3}) - T_0(s_{C_3} + s_{C_3}) \right) - \frac{1}{2} \left((h_{C_3} + h_{C_3}) - T_0(s_{C_3} + s_{C_3}) \right) \bigg|_0 - RT_0 \ln 2 + Q_{\text{in}}^\text{min} \left(1 - \frac{T_0}{T_b} \right) = \frac{1}{2} (h_{C_3} - T_0 s_{C_3}) - \frac{1}{2} (h_{C_3} - T_0 s_{C_3}) \bigg|_0 + Q_{\text{in}}^\text{min} \left(1 - \frac{T_0}{T_1} \right) \]

 * **real case**
 \[\frac{1}{2} \left((h_{C_3} + h_{C_3}) - T_0(s_{C_3} + s_{C_3}) \right) - \frac{1}{2} \left((h_{C_3} + h_{C_3}) - T_0(s_{C_3} + s_{C_3}) \right) \bigg|_0 - RT_0 \ln 2 + Q_{\text{real}}^\text{in} \left(1 - \frac{T_0}{T_R} \right) = \frac{1}{2} (h_{C_3} - T_0 s_{C_3}) - \frac{1}{2} (h_{C_3} - T_0 s_{C_3}) \bigg|_0 + \text{Ex}_{\text{lost}} \]
Exergy analysis /3

- Exergy streams for ideal and real case: summary

<table>
<thead>
<tr>
<th>Reversible</th>
<th>Real</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_x_F</td>
<td>$1/2((h_{C1} - h_{C1}) - T_0(s_{C1} - s_{C1}))$</td>
</tr>
<tr>
<td></td>
<td>$-1/2((h_{C2} - h_{C2}) - T_0(s_{C1} - s_{C1}))$</td>
</tr>
<tr>
<td>E_x_Q1</td>
<td>$Q_{min}^{in} \left(1 - \frac{T_0}{T_b}\right)$</td>
</tr>
<tr>
<td>E_x_B</td>
<td>$1/2(h_{C1} - T_0s_{C1}) - 1/2(h_{C1} - T_0s_{C1})$</td>
</tr>
<tr>
<td>E_x_Q2</td>
<td>$Q_{min}^{in} \left(1 - \frac{T_0}{T_l}\right)$</td>
</tr>
<tr>
<td>E_x_D</td>
<td>$1/2(h_{C2} - T_0s_{C2}) - 1/2(h_{C2} - T_0s_{C2})$</td>
</tr>
</tbody>
</table>

Exergy analysis /4

- The main difference between ideal and real performances are $E_x(Q_1)$ and $E_x(Q_2)$; note that $E_x(Q_2) = 0$ in the real case.
- The difference between the two cases as given on the previous two slides is

$$E_{xlost} = +Q_{real}^{in} T_0 \left(1 - \frac{T_0}{T_R}\right) - Q_{min}^{in} T_0 \left(1 - \frac{1}{T_b}\right)$$

or, normalised per unit input exergy:

$$\frac{E_{xlost}}{Q_{real}^{in} T_0 \left(1 - \frac{T_0}{T_R}\right)} = \frac{1}{Q_{real}^{in} T_0 \left(1 - \frac{1}{T_b}\right)} - 1$$

(gives again value 0.907 \rightarrow efficiency 0.093)
Exergy analysis

The analysis showed that the main losses were at the reboiler and the condenser, due to heat transfer over large temperature differences ΔT.

Instead of trying to reduce these ΔT's, waste heat from another process unit may be available.

→ Heat integration, which at the same time saves steam (for example)

Example: H$_2$O/EtOH distillation

A 5%/95% (w/w) EtOH/H$_2$O mix is to be distilled into a 90% EtOH top product and pure water bottom product.

Feed (18 kg/s) and bottom product (17 kg/s) exchange heat: feed is heated 20 → 70°C; bottom product cools 100 → 48.3°C; the heat exchanged is 3690 kJ/kg top product (1 kg/s).

The reflux cooling heat $q_r = 2640$ kJ/kg top product; the heat reboiler $q_b = 5620$ kJ/kg top product

Temperatures $q_r = 79°C$; $q_b = 104°C$

$m \cdot c_p$ (top) = 1·2.6 kJ/K, $m \cdot \Delta_{vap} H$ (top) = 980 kJ
$m \cdot c_p$ (bottom) = 17·4.2 kJ/K

Source: B01, H84
Example: H₂O/EtOH distillation /2

- The **minimum work** needed for making a 90% EtOH mix from a 5% EtOH mix: see the mass balance in moles.

- The mole fractions for water are 0.9798 for the feed, 0.2212 for the distillate and 1.00 for the bottom product; this then gives with the molar amounts as indicated:

\[
\Delta E = RT_0 \left(5,555 \ln \frac{0.9798}{0.2212} + 944,44 \ln 0.9798 + 19,56 \ln \frac{0.0202}{0.7788} \right)
\]

\[
= 186 \text{ kJ/kg}
\]

for the minimum work per kg top product.

![Diagram of mass balance](image)

See section 1.6 of Exergy analysis

Source: B01, H84

Example: H₂O/EtOH distillation /3

- Assuming surroundings temperature T° = 293K an exergy analysis can be made (exergy flows per kg top product):

- **Reflux cooler**

\[
2640 \left(1 - \frac{293}{352}\right) = 442 \text{ kJ}
\]

- **Boiling top product**

\[
980 \left(1 - \frac{293}{352}\right) = 164 \text{ kJ}
\]

980 kJ/kg for 10% H₂O + 90% EtOH

- **Top product heat-up**

\[
1.26 \left(79 - 20\right) - 293 \ln \frac{352}{293} = 13 \text{ kJ}
\]

- **Bottom product**

\[
17.42 \left(100 - 20\right) - 293 \ln \frac{373}{293} = 661 \text{ kJ}
\]

- **Bottom product after heat exchange**

\[
17.42 \left(48,3 - 20\right) - 293 \ln \frac{321,3}{293} = 92 \text{ kJ}
\]

Source: B01, H84
Example: $\text{H}_2\text{O}/\text{EtOH}$ distillation

- Assume that the bottom heat q_b is delivered by an ideal (Carnot) heat pump: $5620 \cdot (1-293/377) = 1252 \text{ kJ/kg top product exergy}$
 (Note the difference 5620 \rightleftharpoons 1252!)

- This goes to the cold bottom product (7%), top product (14%), reflux cooler (35%) and separation work (4%), total 60%.

- Thus, $1252 - 896 = 356 \text{ kJ}$ is lost as irreversibilities.

- For the heat exchanger, the losses per kg top product are

 $$293 \left(18.4, \ln \frac{343}{293} - 17.4, 2\ln \frac{373}{321,3}\right) = 286 \text{ kJ}$$

 which means that 70 kJ/kg top product is lost in the column itself; which is \~ 40% of the minimum separation work (186 kJ/kg top product.)

Source: B01, H84

3.9 Distillation + heat pump and other improvements
One option: feed stream splitting

- Also known as hybrid distillation
- A **membrane** is used to split the feed into two streams, fed into the column at different locations
- Part of the separation is done (less irreversible) by the membrane → lower reflux ratio and/or less stages

A few other options

- Some GENERAL considerations for improving distillation column efficiency:
 - Process control
 - Feed pre-heat
 - Reduce pressure drop by optimising the trays (or packing)
 - Separate to lower purity and combine with another separation process
 - Use intermediate reboilers and condensers, bringing operating lines closer to the equilibrium line (but this may require more stages or trays)
Double columns

- Paraffin /olefin separations are very energy intensive.
- One example is propane / propylene, or C_3 (atm. b.p. - 42.1°C) / C_3^\equiv (atm. b.p. - 47.7°C). For a single-column tray column distillation process 150-200 trays would be needed, giving a very high (> 100 m) column, with reflux condensing using air or water.
- A double-column process is preferred, with smaller (shorter) columns, using hot and cold water for condensing (column 2) and reboiling (column 1). Note that reboiler for column 2 = condenser for column 1.

Distillation column + heat pump

- Improved efficiency can be obtained by using a heat pump: the condenser is removed and the reflux is obtained after heat exchange in the reboiler and with the feed, and throttling.
- Drawback: complexity \rightarrow costs...
Distillation column + heat pump /2

- Returning to the EtOH/water distillation (see the end of the previous section): the top product is compressed so that its temperature rises from 79 to 104°C (which implies $p_2 = 2$ bar).
- It can then give off heat to the water in the bottom of the column at 100°C. See points 1, 2, 3, 4 in the h, ξ diagram below.
- The h, ξ diagram gives masses $\delta:\phi:1 = (\ast-4):(\ast-1):(1-4) = 3.7:2.7:1$

Source: B01, H84

Distillation column + heat pump /3

- For the compressor work $w_c = \delta \cdot (h_2-h_1)$, and for the bottom heat exchanger $\Delta q_b = \delta \cdot (h_3-h_2)$ which is then found to be 3580 kJ per kg top product. This is 64% of the conventional process value as in the previous section.
- Note compressor losses; and that stream 3 may be used to preheat the top product before the compressor.

Source: B01, H84
Two-feed distillation

Two-feed, or two-enthalpy feed can

- Allow for lowering the number of stages, \(N \) (same \(L/D, x_D, x_B \))
- Improve the separation, better \(X_D, X_B \) (same \(L/D, N \))
- Allow for lowering reflux ratio \(r = L/D \) (same \(N, x_D, x_B \))
- 50% energy savings possible, but modifications are needed

Source: D04, WP93

Adiabatic versus diabatic distillation

- In conventional distillation, heat is only added/removed at reboiler/condensor; no heat is added/removed on the trays: **adiabatic operation**
- In **diabatic operation**, heat can be added/removed by heat exchange, in principle on each tray
- Heat is removed from each tray above feed, added to each tray below feed. Reboiler much smaller or not needed.
- More complicated (↔ process control), but more efficient: lower entropy production (decreases with increasing heat exchange area)

Source: KBJG10, J10
HIDiC Heat integrated distillation column

- Rectification ("top") section is operated at a higher pressure (= pressure of conventional column) than the stripping ("bottom") section
- Heat is transferred from rectification to stripping section

Comparison for C₃ / C₃² splitter

<table>
<thead>
<tr>
<th>Column Height (m)</th>
<th>Conventional</th>
<th>Heat pump (10 bar)</th>
<th>HIDiC (18 bar)</th>
<th>HIDiC (18/13 bar)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Column Diameter (m)</td>
<td>1.5</td>
<td>1.4</td>
<td>2.15</td>
<td>2.15</td>
</tr>
<tr>
<td>Internal Heat Transfer Area (m²)</td>
<td>-</td>
<td>-</td>
<td>399</td>
<td>779</td>
</tr>
<tr>
<td>Number of Tubes</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>14</td>
</tr>
<tr>
<td>Tube Diameter (m)</td>
<td>-</td>
<td>-</td>
<td>0.7</td>
<td>0.35</td>
</tr>
<tr>
<td>Tube (Triangle) Pitch (m)</td>
<td>-</td>
<td>-</td>
<td>0.8</td>
<td>0.45</td>
</tr>
<tr>
<td>Column Weight (kg)</td>
<td>150000</td>
<td>140000</td>
<td>113000</td>
<td>107000</td>
</tr>
<tr>
<td>Bed Volume (m³)</td>
<td>205</td>
<td>119</td>
<td>224</td>
<td>217</td>
</tr>
</tbody>
</table>

Final remarks

Distillation accounts for ~3% of world energy consumption
- Heat integration can give significant energy efficiency improvements (but increased costs, more process control)
- Fully diabatic operation of a distillation column won’t be practically, not all temperature levels will be available
- Most important are the heat exchanger at the lowest and highest trays, these can be integrated using for example a heat pump.
- Maybe integration with other columns is possible
- Further improvement can be obtained by varying column cross sectional area:
 - in a diabatic column rectifier section the vapour flow decreases upwards, in the stripper section it is the opposite

Source: KBJG10, J10
Sources 3

Z87 F. Zuiderweg "Physical separation methods” (in Dutch: Fysische Scheidingsmethoden) TU Delft (1987) (vol. 1)

Z12: Zevenhoven, R. "Massöverföring & separationsteknik” / "Mass transfer & separation technology” course material 424302 (in English !) Åbo Akademi Univ. (2012) Chapter 12

Appendix: h,ξ & x,y diagram

NH₃ – H₂O
6.8 atm

100 PSIA = 6.8 atm
1 BTU/lb mole = 2.326 J/mol

Source: http://www.chemeng.ohio-state.edu/~koelling/523/Appendix_d17.pdf

n-C₆ - n-C₈

<table>
<thead>
<tr>
<th>T °C</th>
<th>x</th>
<th>HL kJ/mol</th>
<th>y</th>
<th>HG kJ/mol</th>
</tr>
</thead>
<tbody>
<tr>
<td>68.7</td>
<td>1</td>
<td>12.99</td>
<td>1</td>
<td>41.87</td>
</tr>
<tr>
<td>69.35</td>
<td>0.9772</td>
<td>13.22</td>
<td>0.9983</td>
<td>42.03</td>
</tr>
<tr>
<td>70</td>
<td>0.9541</td>
<td>13.43</td>
<td>0.9923</td>
<td>42.13</td>
</tr>
<tr>
<td>75</td>
<td>0.8617</td>
<td>15.19</td>
<td>0.9630</td>
<td>43.39</td>
</tr>
<tr>
<td>80</td>
<td>0.7094</td>
<td>16.34</td>
<td>0.9227</td>
<td>44.73</td>
</tr>
<tr>
<td>85</td>
<td>0.5926</td>
<td>18.98</td>
<td>0.8766</td>
<td>46.19</td>
</tr>
<tr>
<td>90</td>
<td>0.4969</td>
<td>21.05</td>
<td>0.8235</td>
<td>47.74</td>
</tr>
<tr>
<td>95</td>
<td>0.3916</td>
<td>23.45</td>
<td>0.7679</td>
<td>49.38</td>
</tr>
<tr>
<td>100</td>
<td>0.2971</td>
<td>26.69</td>
<td>0.7080</td>
<td>51.06</td>
</tr>
<tr>
<td>105</td>
<td>0.2221</td>
<td>29.44</td>
<td>0.6472</td>
<td>53.80</td>
</tr>
<tr>
<td>110</td>
<td>0.1677</td>
<td>32.13</td>
<td>0.5749</td>
<td>56.33</td>
</tr>
<tr>
<td>115</td>
<td>0.1035</td>
<td>35.05</td>
<td>0.4925</td>
<td>59.14</td>
</tr>
<tr>
<td>120</td>
<td>0.0430</td>
<td>38.11</td>
<td>0.4083</td>
<td>62.33</td>
</tr>
<tr>
<td>122.9</td>
<td>0.0062</td>
<td>39.43</td>
<td>0.3761</td>
<td>64.43</td>
</tr>
<tr>
<td>125</td>
<td>0.0000</td>
<td>40.33</td>
<td>0.3426</td>
<td>66.36</td>
</tr>
<tr>
<td>128</td>
<td>0</td>
<td>41.33</td>
<td>0</td>
<td>68.36</td>
</tr>
</tbody>
</table>