The Original Plate & Shell Heat Exchanger

First sustainable technology. Custom-made for your business.
4. Refrigeration process comparison:
Heat Exchangers in refrigeration and heat pumps

Valtteri Haavisto, Customer Service Director
Company

- Manufacturer of Plate and Shell heat exchangers (PSHE)
- Established in 1990
- Privately owned
- Subsidiary companies in UK, Germany, USA and China
- Over 95% products exported from Finland
- Over 50,000 units in operation worldwide
- Yearly ~2000 units installed to Industrial Refrigeration or Liquefied Gas plants
Vahterus Product

- Fully welded plate and shell heat exchangers
- Circular plates inside round shell
- Plates are automatically fully welded to each other
- Heat transfer happens in corrugated plate channels • highly turbulent flow
- Shell around the plates protects the environment from any possible leaks
Content

1) Heat Exchangers in refrigeration systems
 I. Household, Commercial and Industrial Refrigeration
 II. Used refrigerants
 III. System description of the most common systems

2) Condenser
 I. Air-Cooled
 II. Evaporative
 III. Water or Brine Cooled
 IV. Cascade Condenser

3) Evaporator
 I. Flooded or Direct Expansion
 II. Liquid Cooler
 III. Air Blast Cooler
Household, Commercial and Industrial Refrigeration

Household Refrigeration:
- Fridge, Freezers, Heat Pumps
- Capacities typically up to 20kW
- Heat is transferred from refrigerant to air, very simple systems and small volumes

Commercial Refrigeration:
- Supermarkets, cold rooms, small air conditioning systems
- Typically air blast coolers or small centralized cold distribution
- Capacities up to 200kW
Household, Commercial and Industrial Refrigeration

Industrial Refrigeration
- Centralized system, cold energy distributed with water, glycol or CO2
- Cold storages, ice rinks, freezing plants, AC system
- Capacities starting from 150kW
- Largest cooling capacity of single evaporator for Vahterus is 9500kW
 (System included 3 similar units, enduser is Chemical producer)

Same process fundamentals are valid for all systems:
Compress, condense, expand, vaporize!
Used Refrigerants

- The selection of the used refrigerant in the system is highly important:
 - GWP (Global Warming Potential) of the selected fluid
 - Flammability and toxicity
 - Thermodynamic properties: Heat transfer performance, viscosity, latent heat, pressure at condensing temperature
 - Chemical stability
 - Oil solubility

<table>
<thead>
<tr>
<th>Type</th>
<th>R-number</th>
<th>GWP</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>CFC</td>
<td>12</td>
<td>10900</td>
<td>Not in use</td>
</tr>
<tr>
<td>HFCF</td>
<td>22</td>
<td>1810</td>
<td>Not used in Europe</td>
</tr>
<tr>
<td>401A</td>
<td></td>
<td>1182</td>
<td>Not used in Europe</td>
</tr>
<tr>
<td>409A</td>
<td></td>
<td>1909</td>
<td>Not used in Europe</td>
</tr>
<tr>
<td>HCF</td>
<td>23</td>
<td>14800</td>
<td>Not used in Europe</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>675</td>
<td>Not used in Europe</td>
</tr>
<tr>
<td>134a</td>
<td></td>
<td>1430</td>
<td>In phase down</td>
</tr>
<tr>
<td>404a</td>
<td></td>
<td>3922</td>
<td>In phase down</td>
</tr>
<tr>
<td>507a</td>
<td></td>
<td>3985</td>
<td>In phase down</td>
</tr>
<tr>
<td>HFO</td>
<td>1234yf</td>
<td>4</td>
<td>In phase down</td>
</tr>
<tr>
<td></td>
<td>12342e</td>
<td>6</td>
<td>In phase down</td>
</tr>
<tr>
<td>Natural</td>
<td>290 (propane)</td>
<td>3</td>
<td>Not used in Europe</td>
</tr>
<tr>
<td></td>
<td>717 (Ammonia)</td>
<td>0</td>
<td>Not used in Europe</td>
</tr>
<tr>
<td></td>
<td>744 (CO2)</td>
<td>1</td>
<td>Not used in Europe</td>
</tr>
</tbody>
</table>
System Description – Single stage
System Description – Two stage

A = liquid sub-cooling high pressure system.
B = discharge gas cooling.
C = ΔT between evaporating temperature of HP-system and condensing temperature of LP-system.
Condenser

Selection criteria for condenser type:
- Used secondary side media: air, water, glycol
- Condensing pressure
- Possible limits in refrigerant charge

Refrigerant Condensing
- Target to close approach temperatures between condensing and secondary side ‡ Saves Energy!
- Condensing happens mainly through the condensate film
- Typically refrigerant gas is superheated when entering the condenser, so gas cooling needs to be calculated in
Condenser: Air Cooled (Dry Cooler)

- Commonly used in AC systems
- Mainly tube type coil heat exchanger based on convective heat transfer
- Air flow passes the tubes
- Cheap and easy solution
- High condensing temperature
- Large refrigerant charge, especially in winter time
- High Fan power
- Heat transfer coefficient U: 20..40 W/m²K
Condenser: Evaporative Condenser

- Improved heat transfer against air cooled
- Base on water evaporation on the air side that enhances heat transfer
- Heat transfer part can be made from metal or plastic
- Air flow passes the tubes, water sprayed from the top
- Water treatment important: bacteria like legionella etc possible
- High condensing temperature
- High Fan power
- Heat transfer coefficient U: 200..500 W/m^2K
Condenser: Water or Brine Cooled 1

- Plate type heat exchangers mainly used in industrial solutions with Ammonia and CO2
- Fully welded or semi-welded plate heat exchanger used for ammonia
- Brazed plate heat exchangers used for small HFC systems (R134a etc)
- Shell and Tube used still for large HFC systems
- Heat transfer coefficient for water cooled ammonia condensing
 - Shell and Tube 1500 – 2000 W/m2K
 - Plate and Shell 2500 – 4500 W/m2K
- Cooling water must be available
- If water can’t be used because of freezing risk, brines can be used:
 Ethylene Glycol, Propylene Glycol, CaCl, Alcali etc.
Condenser: Water or Brine Cooled 2

Example of Ammonia Condenser to AC system:
- Capacity 1200kW
- Ammonia temperature in 100C, condensing 36C (13barg)
- Water inlet temperature 26C, outlet 32C
- Plate & shell HE U value 3000W/m2K
 - Alfa for ammonia desuperheating and condensing ~5500W/m2K
 - Alfa for water ~11800W/m2K
 - Stainless steel plate thickness 0.8mm
- Surface area for such unit is ~51m2
- Can be used on top of condensate receiver or high pressure float valve
Condenser: Cascade Condenser

Cascade Condenser is a condenser with refrigerant evaporating on the other side.
- Cascade system is used especially at lower evaporation temperatures like freezing of meat, fish, ice-cream and in snow/ice – build ups.
- Cold evaporation temperature is better for denser gas (like CO2)
- Liquid heat transfer decreases at low temperature due to the viscosity increase, that’s why better to use phase changing media
- Typical system works with NH3 and CO2. NH3 is used as a refrigerant and CO2 as brine.
- No temperature difference in evaporator side: ideal for ice rinks
Condenser – things to notice

What to remember:
- Ensure always good condensate draining from the condenser
- Condenser is located after compressor, pulses exists
- Keep the water quality in control
- Remove all the non-condensable gases
- Parallel heat recovery condensers can be good option for energy saving ‡ make sure that condensers do have similar pressure drop.
Evaporators

Selection criteria for evaporator type:

- Heat is removed to refrigerant
- Used secondary side media: air, water, glycol
- Requirements for outlet gas quality
- Possible limits and need for refrigerant charge
- Refrigerant type: mist or droplets, saturation glide

Refrigerant Evaporation:

- Is either Flooded (Saturated) or Dry (Superheated)
- Pool boiling or forced convection boiling
- Oil is typically partly in evaporator and that decreases heat transfer
System Description – Single stage DX (Dry expansion)

- Dry expansion is an evaporator where refrigerant evaporated completely and is superheated (3 – 8K)
- Always once through type heat exchanger
- DX evaporator is used mainly for industrial made refrigerants (R134a etc)
 - Droplets are difficult to separate due to the small droplet size (= mist)
 - Small latent heat ⇒ easier control
- Worse heat transfer, because gas heat transfer
- No droplet separator needed
System Description – Single stage Flooded

- Can be pool type and forced convection evaporation
- Outlet from the evaporator is wet and partly returned back to the evaporator
- Typically 20 – 50% of the liquid evaporates
- Droplets are separated with a demister (Surge Drum)
- Flooded evaporators are natural (Thermosyphon) or pump driven
- High heat transfer due to fully wetted surfaces
- Mostly used method for natural refrigerants
- Quick response to capacity change 0 – 100%
- Smaller temperature differences
Evaporator: Liquid Cooler 1

- Liquid can be water or freezing resistant brine
- Mostly used heat exchanger for the duty
 - Welded, brazed, gasketed plate heat exchanger and shell and tube units
- Compressor always requires droplet free gas
 - Superheating
 - Droplet separation
- Feed is controlled by expansion valve or high pressure float valve
- Heat transfer coefficient for water coolers with ammonia or R134a flooded evaporators:
 - Shell and Tube 200 – 700 W/m2K
 - Plate and Shell 1500 – 2300 W/m2K
Evaporator: Liquid Cooler 2

Example of Water Cooler with Ammonia in AC system:

- Capacity 1000kW
- Ammonia evaporation temperature 3C (3.8barg)
- Water inlet temperature 12C, outlet 6C (Typical air cooler temperatures)
- Plate & Shell heat exchanger U value 2500W/m²K
 - Alfa for ammonia pool boiling ~4800W/m²K
 - Alfa for water ~6800W/m²K
 - Stainless steel plate thickness 0.7mm
- Surface area for such unit is ~74m²
- Special construction with pool boiling type evaporation, used for small charge ammonia system
- Modern small charge ammonia systems < 100kgNH₃ / 1000kW Cooling
Evaporator: Air Blast Cooler

- Designed to remove the heat from air to refrigerant
- Sustains adequate humidity in the cold room
- Air circulation can be natural or forced convection (Fan)
- Finned tube - type most common, refrigerant on pipe side
- Air freezes to heat transfer surfaces, defrosting required:
 - Natural, electric or hot gas defrosting
 - Manual hot water defrosting also in batch processes
- Heat transfer coefficient for Air blast coolers, Dry Expansion
 - Natural Air Circulation 5…10 W/m2K
 - Forced Air Circulation 15…25 W/m2K
Evaporator: Oil Removal

- Some amount of compressor is collected to evaporator
- Oil accumulates to evaporator if not removed
- Oil can be soluble or non-soluble to refrigerant
 - Non-solubles removed by gravity
 - Solubles removed by separate devices
- Oil pour point needs to be at least 10K lower than evaporation temperature
- Oil layer on heat transfer surfaces works like an insulation
 - 0.1mm layer on top of tube reduces U-value from 1000 to 600W/m²K in S&T heat exchanger

Fig. 10.20 Basic system diagram

1 = oil separator
2 = oil return
3 = refrigerant with oil
4 = expansion valve
5 = oil with refrigerant
6 = oil back to compressor
7 = oil free refrigerant
Evaporator – things to notice

- Energy efficiency: how small temperature difference is best?
- Vapor Quality entering the compressor
- Liquid level in evaporator, too low level decreases the performance
- Oil removal and correct quality
Thanks!

- Questions and Comments?

Valtteri.Haavisto@Vahterus.com