Hilbert Spaces Contained in Quotients of KreĐă Spaces, with Applications to Passive State/Signal Realization Theory.

Damir Z. Arov
Division of Mathematical Analysis
Institute of Physics and Mathematics
South-Ukrainian Pedagogical University
65020 Odessa, Ukraine

Olof J. Staffans
Åbo Akademi University
Department of Mathematics
FIN-20500 Åbo, Finland
http://www.abo.fi/~staffans/

Abstract

Let Z be a maximal nonnegative subspace of a KreĐă space \mathcal{K} with (indefinite) inner product $\langle \cdot, \cdot \rangle_{\mathcal{K}}$, let Z_{\perp} be the orthogonal companion to Z in \mathcal{K}, and let $Z_0 = Z \cap Z_{\perp}$ be the maximal neutral subspace of Z. Then $\langle \cdot, \cdot \rangle_{\mathcal{K}}$ induces a positive inner product in the quotient space Z/ Z_0, and $-\langle \cdot, \cdot \rangle_{\mathcal{K}}$ induces a positive inner product in the quotient space Z_{\perp}/ Z_0. These two inner product spaces way are not, in general, complete. We show that the completions of Z/ Z_0 and Z_{\perp}/ Z_0 can be identified in a natural way with certain subspaces of the quotient spaces \mathcal{K}/ Z_{\perp} and \mathcal{K}/ Z, respectively. The construction of these subspaces is similar to the deBrange–Rovnyak construction used to realize an operator-valued Schur function in the unit disk D as the characteristic function of a discrete time input/state/output system. More precisely, the completion of Z_{\perp}/ Z_0 can be identified with the following subspace $\mathcal{X}[Z]$ of \mathcal{K}/ Z.

For each $k \in \mathcal{K}$ we denote the equivalence class in \mathcal{K}/ Z to which k belongs by $[k] = k + Z$. Then

$\mathcal{X}[Z] = \{ [k] \in \mathcal{K}/ Z \mid \| [k] \|_{\mathcal{X}[Z]} < \infty \}$,

where the norm $\| \cdot \|_{\mathcal{X}[Z]}$ in $\mathcal{X}[Z]$ is given by

$\| [k] \|_{\mathcal{X}[Z]} = \sqrt{\sup_{z \in Z} (-\langle k - z, k - z \rangle_{\mathcal{K}})}$.

The subspace $\mathcal{X}[Z_{\perp}]$ of \mathcal{K}/ Z_{\perp} is defined in an analogous fashion.

We apply the technique described above to construct three canonical passive state/signal realizations of a given passive behavior \mathfrak{M}, namely a) a controllable forward conservative, b) an observable backward conservative, and c) a simple conservative state/signal realization. All of these are determined unique by \mathfrak{M} up to unitary similarity. The passive behavior \mathfrak{M} is roughly the time-domain counterpart of a shift-invariant maximal nonnegative subspace Z of the KreĐ space $\mathcal{K} := H^2(D; W)$, where W is a KreĐ space. By decomposing W in different ways into the direct sum of an input space and an output space and interpreting Z as the graph of a shift-invariant operator we get the standard input/state/output realizations of Schur functions, Charathéodory functions, and Potapov functions in the unit disk.

References

