H-Passive Linear Discrete Time Invariant State/Signal Systems

Damir Arov
South-Ukrainian Pedagogical University

Olof Staffans
Åbo Akademi University
http://www.abo.fi/~staffans
Summary

- Discrete time-invariant i/s/o systems
- H-passivity with different supply rates
- State/signal systems
- H-passive s/s systems
- The KYP inequality
- Signal behaviors
- Passive S/S Systems \leftrightarrow Passive Behaviors
- Realization theory
Discrete time-invariant i/s/o systems
Discrete Time-Invariant I/S/O System

Linear discrete-time-invariant systems are typically modeled as i/s/o (input/state/output) systems of the type

\[x(n + 1) = Ax(n) + Bu(n), \quad n \in \mathbb{Z}^+, \quad x(0) = x_0, \]
\[y(n) = Cx(n) + Du(n), \quad n \in \mathbb{Z}^+. \]

(1)

Here \(\mathbb{Z}^+ = \{0, 1, 2, \ldots\} \) and
\(A, B, C, D, \) are bounded operators.
Discrete Time-Invariant I/S/O System

Linear discrete-time-invariant systems are typically modeled as i/s/o (input/state/output) systems of the type

\[x(n + 1) = Ax(n) + Bu(n), \quad n \in \mathbb{Z}^+, \quad x(0) = x_0, \]
\[y(n) = Cx(n) + Du(n), \quad n \in \mathbb{Z}^+. \]

Here \(\mathbb{Z}^+ = \{0, 1, 2, \ldots\} \) and \(A, B, C, D, \) are bounded operators.

\(u(n) \in \mathcal{U} = \text{the input space}, \)
\(x(n) \in \mathcal{X} = \text{the state space}, \)
\(y(n) \in \mathcal{Y} = \text{the output space} \) (all Hilbert spaces).
Discrete Time-Invariant I/S/O System

Linear discrete-time-invariant systems are typically modeled as i/s/o (input/state/output) systems of the type

\[x(n+1) = Ax(n) + Bu(n), \quad n \in \mathbb{Z}^+, \quad x(0) = x_0, \]
\[y(n) = Cx(n) + Du(n), \quad n \in \mathbb{Z}^+. \]

(1)

Here $\mathbb{Z}^+ = \{0, 1, 2, \ldots\}$ and A, B, C, D, are bounded operators.

$u(n) \in \mathcal{U}$ = the input space,

$x(n) \in \mathcal{X}$ = the state space,

$y(n) \in \mathcal{Y}$ = the output space (all Hilbert spaces).

By a trajectory of this system we mean a triple of sequences (u, x, y) satisfying (1).
H-Passive I/S/O System
The system (1) is H-passive if all trajectories satisfy the condition

$$E_H(x(n+1)) - E_H(x(n)) \leq j(u(n), y(n)), \quad n \in \mathbb{Z}^+, \quad (2)$$

where E_H is a positive storage function (Lyapunov function)

$$E_H(x) = \langle Hx, x \rangle_X, \quad H > 0,$$

and j is an indefinite quadratic supply rate

$$j(u, y) = \langle [y^T u], J[y^T u] \rangle_{Y \oplus U}$$

determined by a signature operator J ($= J^* = J^{-1}$).
The Three Most Common Supply Rates
The Three Most Common Supply Rates

(i) The scattering supply rate \(j_{\text{sca}}(u, y) = -\|y\|^2_Y + \|u\|^2_U \) with signature operator

\[
J_{\text{sca}} = \begin{bmatrix}
-1 & 0 \\
0 & 1_U
\end{bmatrix}.
\]
The Three Most Common Supply Rates

(i) The scattering supply rate $j_{\text{sca}}(u, y) = -\|y\|_Y^2 + \|u\|_U^2$ with signature operator $J_{\text{sca}} = \begin{bmatrix} -1_Y & 0 \\ 0 & 1_U \end{bmatrix}$.

(ii) The impedance supply rate $j_{\text{imp}}(u, y) = 2\Re\langle y, \Psi u \rangle_U$ with signature operator $J_{\text{imp}} = \begin{bmatrix} 0 & \Psi \\ \Psi^* & 0 \end{bmatrix}$, where Ψ is a unitary operator $U \to Y$.
The Three Most Common Supply Rates

(i) The scattering supply rate \(j_{\text{sca}}(u, y) = -\|y\|^2_Y + \|u\|^2_U \) with signature operator \(J_{\text{sca}} = \begin{bmatrix} -1_Y & 0 \\ 0 & 1_U \end{bmatrix} \).

(ii) The impedance supply rate \(j_{\text{imp}}(u, y) = 2\Re\langle y, \Psi u \rangle_U \) with signature operator \(J_{\text{imp}} = \begin{bmatrix} 0 & \Psi \\ \Psi^* & 0 \end{bmatrix} \), where \(\Psi \) is a unitary operator \(U \to Y \).

(iii) The transmission supply rate \(j_{\text{tra}}(u, y) = -\langle y, J_Y y \rangle_Y + \langle u, J_U u \rangle_U \) with signature operator \(J_{\text{tra}} = \begin{bmatrix} -J_Y & 0 \\ 0 & J_U \end{bmatrix} \), where \(J_Y \) and \(J_U \) are signature operators in \(Y \) and \(U \), respectively.
The Three Most Common Supply Rates

(i) The scattering supply rate \(j_{\text{sca}}(u, y) = -\|y\|_Y^2 + \|u\|_U^2 \) with signature operator \(J_{\text{sca}} = \begin{bmatrix} -1_Y & 0 \\ 0 & 1_U \end{bmatrix} \).

(ii) The impedance supply rate \(j_{\text{imp}}(u, y) = 2\Re \langle y, \Psi u \rangle_U \) with signature operator \(J_{\text{imp}} = \begin{bmatrix} 0 & \Psi \\ \Psi^* & 0 \end{bmatrix} \), where \(\Psi \) is a unitary operator \(U \rightarrow Y \).

(iii) The transmission supply rate \(j_{\text{tra}}(u, y) = -\langle y, J_Y y \rangle_Y + \langle u, J_U u \rangle_U \) with signature operator \(J_{\text{tra}} = \begin{bmatrix} -J_Y & 0 \\ 0 & J_U \end{bmatrix} \), where \(J_Y \) and \(J_U \) are signature operators in \(Y \) and \(U \), respectively.

It is possible to combine all these cases into one single setting, called the s/s (state/signal) setting. The idea is to introduce a class of systems which does not distinguish between inputs and outputs.
State/Signal Systems
State/Signal System: Definition

A linear discrete time-invariant s/s system Σ is modelled by a system of equations

$$x(n + 1) = F \left[\begin{array}{c} x(n) \\ w(n) \end{array} \right], \quad n \in \mathbb{Z}^+, \quad x(0) = x_0, \quad (3)$$

Here F is a bounded linear operator with a closed domain $\mathcal{D}(F) \subset [X] \ (\mathbb{Z}^+ = 0, 1, 2, \ldots)$ and certain additional properties.
State/Signal System: Definition

A linear discrete time-invariant s/s system Σ is modelled by a system of equations

$$x(n+1) = F \begin{bmatrix} x(n) \\ w(n) \end{bmatrix}, \quad n \in \mathbb{Z}^+, \quad x(0) = x_0,$$

(3)

Here F is a bounded linear operator with a closed domain $\mathcal{D}(F) \subset [\mathcal{X}]$ ($\mathbb{Z}^+ = 0, 1, 2, \ldots$) and certain additional properties.

$x(n) \in \mathcal{X} =$ the state space (a Hilbert space),

$w(n) \in \mathcal{W} =$ the signal space (a Kreĭn space).
State/Signal System: Definition

A linear discrete time-invariant s/s system Σ is modelled by a system of equations

$$x(n + 1) = F\begin{bmatrix} x(n) \\ w(n) \end{bmatrix}, \quad n \in \mathbb{Z}^+, \quad x(0) = x_0,$$

(3)

Here F is a bounded linear operator with a closed domain $\mathcal{D}(F) \subset \mathcal{X} \mathcal{W} (\mathbb{Z}^+ = 0, 1, 2, \ldots)$ and certain additional properties.

$x(n) \in \mathcal{X} =$ the state space (a Hilbert space),

$w(n) \in \mathcal{W} =$ the signal space (a Kreĭn space).

By a trajectory of this system we mean a pair of sequences (x, w) satisfying (3).
State/Signal System: Definition

A linear discrete time-invariant s/s system Σ is modelled by a system of equations

\[x(n + 1) = F \begin{bmatrix} x(n) \\ w(n) \end{bmatrix}, \quad n \in \mathbb{Z}^+, \quad x(0) = x_0, \quad (3) \]

Here F is a bounded linear operator with a closed domain $\mathcal{D}(F) \subset [\mathcal{X}_W]$ ($\mathbb{Z}^+ = 0, 1, 2, \ldots$) and certain additional properties.

$x(n) \in \mathcal{X} =$ the state space (a Hilbert space),
$w(n) \in \mathcal{W} =$ the signal space (a Kreǐn space).

By a trajectory of this system we mean a pair of sequences (x, w) satisfying (3).

In the case of an i/s/o system we take $w = [y \ u]$, $F \begin{bmatrix} x \\ y \end{bmatrix} = Ax + Bu$, and
$\mathcal{D}(F) = \left\{ \begin{bmatrix} x \\ y \end{bmatrix} \mid y = Cx + Du \right\}$.
Additional Properties of F

We require F to have the following two properties:
Additional Properties of F

We require F to have the following two properties:

(i) Every $x_0 \in \mathcal{X}$ is the initial state of some trajectory,
Additional Properties of F

We require F to have the following two properties:

(i) Every $x_0 \in \mathcal{X}$ is the initial state of some trajectory,

(ii) The trajectory (x, w) is determined uniquely by x_0 and w.
The Adjoint State/Signal System

Each s/s system Σ has an adjoint s/s system Σ^* with the same state space \mathcal{X} and the Kreǐn signal space $\mathcal{W}^* = -\mathcal{W}$.
The Adjoint State/Signal System

Each s/s system Σ has an adjoint s/s system Σ_* with the same state space \mathcal{X} and the Kreın signal space $\mathcal{W}_* = -\mathcal{W}$.

This system is determined by the fact that $(x_*(\cdot), w_*(\cdot))$ is a trajectory of Σ_* if and only if

$$-\langle x(n + 1), x_*(0) \rangle_{\mathcal{X}} + \langle x(0), x_*(n + 1) \rangle_{\mathcal{X}} + \sum_{k=0}^{n} [w(k), w_*(n - k)]_{\mathcal{W}} = 0, \quad n \in \mathbb{Z}^+,$$

for all trajectories $(x(\cdot), w(\cdot))$ of Σ.
The Adjoint State/Signal System

Each s/s system Σ has an adjoint s/s system Σ_* with the same state space \mathcal{X} and the Kreĭn signal space $\mathcal{W}_* = -\mathcal{W}$.

This system is determined by the fact that $(x_*(\cdot), w_*(\cdot))$ is a trajectory of Σ_* if and only if

$$-\langle x(n + 1), x_*(0) \rangle \mathcal{X} + \langle x(0), x_*(n + 1) \rangle \mathcal{X} + \sum_{k=0}^{n} [w(k), w_*(n - k)]_\mathcal{W} = 0, \quad n \in \mathbb{Z}^+,$$

for all trajectories $(x(\cdot), w(\cdot))$ of Σ.

The adjoint of Σ_* is the original system Σ.
Controllability and Observability

A s/s system Σ is controllable if the set of all states $x(n)$, $n \geq 1$, which appear in some trajectory $(x(\cdot), w(\cdot))$ of Σ with $x(0) = 0$ (i.e., an externally generated trajectory) is dense in \mathcal{X}.
Controllability and Observability

A s/s system Σ is **controllable** if the set of all states $x(n)$, $n \geq 1$, which appear in some trajectory $(x(\cdot), w(\cdot))$ of Σ with $x(0) = 0$ (i.e., an **externally generated trajectory**) is dense in \mathcal{X}.

The system Σ is **observable** if there do not exist any nontrivial trajectories $(x(\cdot), w(\cdot))$ where the signal component $w(\cdot)$ is identically zero.
Controllability and Observability

A s/s system Σ is **controllable** if the set of all states $x(n)$, $n \geq 1$, which appear in some trajectory $(x(\cdot), w(\cdot))$ of Σ with $x(0) = 0$ (i.e., an **externally generated trajectory**) is dense in \mathcal{X}.

The system Σ is **observable** if there do not exist any nontrivial trajectories $(x(\cdot), w(\cdot))$ where the signal component $w(\cdot)$ is identically zero.

Fact: Σ is observable if and only Σ_* is controllable.
Controllability and Observability

A s/s system Σ is **controllable** if the set of all states $x(n), \; n \geq 1$, which appear in some trajectory $(x(\cdot), w(\cdot))$ of Σ with $x(0) = 0$ (i.e., an externally generated trajectory) is dense in \mathcal{X}.

The system Σ is **observable** if there do not exist any nontrivial trajectories $(x(\cdot), w(\cdot))$ where the signal component $w(\cdot)$ is identically zero.

Fact: Σ is observable if and only Σ_* is controllable.

Σ is **minimal** if Σ is both controllable and observable.
\(H \)-Passive State/Signal Systems
H-Passive State/Signal Systems

Let $H = H^* > 0$.\(^1\) Here H and H^{-1} may be unbounded. A s/s system Σ is

\(^1\) $H > 0$ means that $\langle x, Hx \rangle > 0$ for all nonzero $x \in \mathcal{D}(H)$.
H-Passive State/Signal Systems

Let $H = H^* > 0$.\(^1\) Here H and H^{-1} may be unbounded. A s/s system Σ is

(i) **forward H-passive** if $x(n) \in \mathcal{D}(\sqrt{H})$ and

$$\|\sqrt{H}x(n+1)\|_X^2 - \|\sqrt{H}x(n)\|_X^2 \leq [w(n), w(n)]_W, \quad n \in \mathbb{Z}^+,$$

for every trajectory (x, w) of Σ with $x(0) \in \mathcal{D}(\sqrt{H})$.

\(^1H > 0\) means that $\langle x, Hx \rangle > 0$ for all nonzero $x \in \mathcal{D}(H)$.
Let $H = H^* > 0$.\(^1\) Here H and H^{-1} may be unbounded. A s/s system Σ is

(i) forward H-passive if $x(n) \in \mathcal{D}(\sqrt{H})$ and

$$\|\sqrt{H}x(n+1)\|_X^2 - \|\sqrt{H}x(n)\|_X^2 \leq [w(n), w(n)]_W, \quad n \in \mathbb{Z}^+,$$

for every trajectory (x, w) of Σ with $x(0) \in \mathcal{D}(\sqrt{H})$,

(ii) backward H-passive if Σ_* is forward H^{-1}-passive,

\(^1\) $H > 0$ means that $\langle x, Hx \rangle > 0$ for all nonzero $x \in \mathcal{D}(H)$.

H-Passive State/Signal Systems

Let $H = H^* > 0$. Here H and H^{-1} may be unbounded. A s/s system Σ is

(i) **forward H-passive** if $x(n) \in D(\sqrt{H})$ and

$$\|\sqrt{H}x(n+1)\|_X^2 - \|\sqrt{H}x(n)\|_X^2 \leq [w(n), w(n)]_W, \quad n \in \mathbb{Z}^+,$$

for every trajectory (x, w) of Σ with $x(0) \in D(\sqrt{H})$,

(ii) **backward H-passive** if Σ^* is forward H^{-1}-passive,

(iii) **H-passive** if it is both forward H-passive and backward H-passive.

$^1H > 0$ means that $\langle x, Hx \rangle > 0$ for all nonzero $x \in D(H)$.
H-Passive State/Signal Systems

Let $H = H^* > 0$. Here H and H^{-1} may be unbounded. A s/s system Σ is

(i) **forward H-passive** if $x(n) \in D(\sqrt{H})$ and

$$
\|\sqrt{H}x(n+1)\|_{X}^2 - \|\sqrt{H}x(n)\|_{X}^2 \leq [w(n), w(n)]_W, \quad n \in \mathbb{Z}^+,
$$

for every trajectory (x, w) of Σ with $x(0) \in D(\sqrt{H})$,

(ii) **backward H-passive** if Σ_* is forward H^{-1}-passive,

(iii) **H-passive** if it is both forward H-passive and backward H-passive.

(iv) **passive** if it is 1_X-passive (1_X is the identity operator in X).

$^1H > 0$ means that $\langle x, Hx \rangle > 0$ for all nonzero $x \in D(H)$.
The S/S KYP Inequality

It is not difficult to see that a s/s system Σ whose trajectories are defined by (3) is forward H-passive if and only if $H > 0$ is a solution of the generalized s/s KYP (Kalman–Yakubovich–Popov) inequality2

$$\|H^{1/2}F \begin{bmatrix} x \\ w \end{bmatrix}\|_{\mathcal{X}}^2 - \|H^{1/2}x\|_{\mathcal{X}}^2 \leq [w, w]_{\mathcal{W}}, \quad \begin{bmatrix} x \\ w \end{bmatrix} \in \mathcal{D}(F), \quad x \in \mathcal{D}(H^{1/2}). \quad (4)$$

2In particular, in order for the first term in this inequality to be well-defined we require F to map $\{ \begin{bmatrix} x \\ w \end{bmatrix} \in \mathcal{D}(F) \mid x \in \mathcal{D}(H^{1/2}) \}$ into $\mathcal{D}(H^{1/2})$.

The S/S KYP Inequality

It is not difficult to see that a s/s system Σ whose trajectories are defined by (3) is forward H-passive if and only if $H > 0$ is a solution of the generalized s/s KYP (Kalman–Yakubovich–Popov) inequality\(^2\)

$$\|H^{1/2} F [\tfrac{x}{w}]\|_X^2 - \|H^{1/2} x\|_X^2 \leq [w, w]_W, \quad [\tfrac{x}{w}] \in D(F), \quad x \in D(H^{1/2}). \quad (4)$$

This inequality is named after Kalman [Kal63], Yakubovich [Yak62], and Popov [Pop61] (who at that time restricted themselves to the finite-dimensional input/state/output case).

\(^2\)In particular, in order for the first term in this inequality to be well-defined we require F to map $\{[\tfrac{x}{w}] \in D(F) \mid x \in D(H^{1/2})\}$ into $D(H^{1/2})$.

13
The S/S KYP Inequality

It is not difficult to see that a s/s system Σ whose trajectories are defined by (3) is forward H-passive if and only if $H > 0$ is a solution of the generalized s/s KYP (Kalman–Yakubovich–Popov) inequality

$$\|H^{1/2}F \begin{bmatrix} x \\ w \end{bmatrix}\|_{\mathcal{X}}^2 - \|H^{1/2}x\|_{\mathcal{X}}^2 \leq [w, w]_{\mathcal{W}}, \quad \begin{bmatrix} x \\ w \end{bmatrix} \in \mathcal{D}(F), \quad x \in \mathcal{D}(H^{1/2}).$$

(4)

This inequality is named after Kalman [Kal63], Yakubovich [Yak62], and Popov [Pop61] (who at that time restricted themselves to the finite-dimensional input/state/output case).

There is a rich literature on this version of the KYP inequality and the corresponding equality; see, e.g., [PAJ91], [IW93], and [LR95], and the references mentioned there.

\footnote{In particular, in order for the first term in this inequality to be well-defined we require F to map $\left\{ \begin{bmatrix} x \\ w \end{bmatrix} \in \mathcal{D}(F) \mid x \in \mathcal{D}(H^{1/2}) \right\}$ into $\mathcal{D}(H^{1/2})$.}
In the seventies the classical results on the i/s/o KYP inequalities were extended to systems with \(\dim \mathcal{X} = \infty \) by Yakubovich and his students and collaborators (see [Yak74, Yak75, LY76] and the references listed there).
Infinite-Dimensional I/S/O KYP Inequality: History

In the seventies the classical results on the i/s/o KYP inequalities were extended to systems with $\dim \mathcal{X} = \infty$ by Yakubovich and his students and collaborators (see [Yak74, Yak75, LY76] and the references listed there).

There is now a rich literature also on this subject; see, e.g., the discussion in [Pan99] and the references cited there.
Infinite-Dimensional I/S/O KYP Inequality: History

In the seventies the classical results on the i/s/o KYP inequalities were extended to systems with \(\dim \mathcal{X} = \infty \) by Yakubovich and his students and collaborators (see [Yak74, Yak75, LY76] and the references listed there).

There is now a rich literature also on this subject; see, e.g., the discussion in [Pan99] and the references cited there.

However, it is (almost) always assumed that \(H \) or \(H^{-1} \) is bounded. The only exception is the article [AKP05] by Arov, Kaashoek and Pik.
Signal behaviors
Behaviors: Definition

By a behavior on the signal space \mathcal{W} we mean a closed right-shift invariant subspace of the Fréchet space $\mathcal{W}^{\mathbb{Z}^+}$.
Behaviors: Definition

By a behavior on the signal space \mathcal{W} we mean a closed right-shift invariant subspace of the Fréchet space \mathcal{W}^{Z^+}.

Thus, in particular, the set \mathcal{W} of all sequences w that are the signal part of some externally generated trajectory (x, w) of a s/s system Σ is a behavior.
Behaviors: Definition

By a behavior on the signal space \mathcal{W} we mean a closed right-shift invariant subspace of the Fréchet space $\mathcal{W}^{\mathbb{Z}^+}$.

Thus, in particular, the set \mathcal{M} of all sequences w that are the signal part of some externally generated trajectory (x, w) of a s/s system Σ is a behavior.

We call this the behavior induced by Σ, and refer to Σ as a s/s realization of \mathcal{M}, or, in the case where Σ is minimal, as a minimal s/s realization of \mathcal{M}.
Behaviors: Definition

By a behavior on the signal space \mathcal{W} we mean a closed right-shift invariant subspace of the Fréchet space $\mathcal{W}_{\mathbb{Z}^+}$.

Thus, in particular, the set \mathcal{W} of all sequences w that are the signal part of some externally generated trajectory (x, w) of a s/s system Σ is a behavior.

We call this the behavior induced by Σ, and refer to Σ as a s/s realization of \mathcal{W}, or, in the case where Σ is minimal, as a minimal s/s realization of \mathcal{W}.

A behavior is realizable if it has a s/s realization.
Behaviors: Definition

By a behavior on the signal space \mathcal{W} we mean a closed right-shift invariant subspace of the Fréchet space $\mathcal{W}^{\mathbb{Z}^+}$.

Thus, in particular, the set \mathcal{W} of all sequences w that are the signal part of some externally generated trajectory (x, w) of a s/s system Σ is a behavior.

We call this the behavior induced by Σ, and refer to Σ as a s/s realization of \mathcal{W}, or, in the case where Σ is minimal, as a minimal s/s realization of \mathcal{W}.

A behavior is realizable if it has a s/s realization.

Two s/s systems Σ_1 and Σ_2 with the same signal space are externally equivalent if they induce the same behavior.
Pseudo-Similarity

Two s/s systems Σ and Σ_1 with the same signal space \mathcal{W} and state spaces \mathcal{X} and \mathcal{X}_1, respectively, are called pseudo-similar if there exists an injective densely defined closed linear operator $R: \mathcal{X} \rightarrow \mathcal{X}_1$ with dense range such that the following conditions hold:

$$(x(\cdot), w(\cdot)) \text{ is a trajectory of } \Sigma \iff (Rx(\cdot), w(\cdot)) \text{ is a trajectory of } \Sigma_1.$$

In particular, if Σ_1 and Σ_2 are pseudo-similar, then they are externally equivalent.
Pseudo-Similarity

Two s/s systems Σ and Σ_1 with the same signal space \mathcal{W} and state spaces \mathcal{X} and \mathcal{X}_1, respectively, are called pseudo-similar if there exists an injective densely defined closed linear operator $R: \mathcal{X} \rightarrow \mathcal{X}_1$ with dense range such that the following conditions hold:

$$(x(\cdot), w(\cdot)) \text{ is a trajectory of } \Sigma \iff (Rx(\cdot), w(\cdot)) \text{ is a trajectory of } \Sigma_1.$$

In particular, if Σ_1 and Σ_2 are pseudo-similar, then they are externally equivalent.

Conversely, if Σ_1 and Σ_2 are minimal and externally equivalent, then they are necessarily pseudo-similar.
Pseudo-Similarity

Two s/s systems Σ and Σ_1 with the same signal space \mathcal{W} and state spaces \mathcal{X} and \mathcal{X}_1, respectively, are called pseudo-similar if there exists an injective densely defined closed linear operator $R: \mathcal{X} \to \mathcal{X}_1$ with dense range such that the following conditions hold:

$$(x(\cdot), w(\cdot)) \text{ is a trajectory of } \Sigma \iff (Rx(\cdot), w(\cdot)) \text{ is a trajectory of } \Sigma_1.$$

In particular, if Σ_1 and Σ_2 are pseudo-similar, then they are externally equivalent.

Conversely, if Σ_1 and Σ_2 are minimal and externally equivalent, then they are necessarily pseudo-similar.

A realizable behavior \mathcal{W} on the signal space \mathcal{W} has a minimal s/s realization, which is determined by \mathcal{W} up to pseudo-similarity. (See [AS05, Section 7] for details.)
The Adjoint Behavior

The adjoint of the behavior \mathcal{W} on \mathcal{W} is a behavior \mathcal{W}_* on \mathcal{W}_* defined as the set of sequences w_* satisfying

$$\sum_{k=0}^{n}[w(k), w_*(n-k)]_{\mathcal{W}} = 0, \quad n \in \mathbb{Z}^+,$$

for all $w \in \mathcal{W}$.
The Adjoint Behavior

The adjoint of the behavior \(\mathcal{W} \) on \(\mathcal{W} \) is a behavior \(\mathcal{W}_* \) on \(\mathcal{W}_* \) defined as the set of sequences \(w_* \) satisfying

\[
\sum_{k=0}^{n} [w(k), w_*(n-k)]_{\mathcal{W}} = 0, \quad n \in \mathbb{Z}^+,
\]

for all \(w \in \mathcal{W} \).

If \(\mathcal{W} \) is induced by \(\Sigma \), then \(\mathcal{W}_* \) is (realizable and) induced by \(\Sigma_* \),
The Adjoint Behavior

The adjoint of the behavior \mathcal{W} on \mathcal{W} is a behavior \mathcal{W}_* on \mathcal{W}_* defined as the set of sequences w_* satisfying

$$\sum_{k=0}^{n} [w(k), w_*(n - k)]_{\mathcal{W}} = 0, \quad n \in \mathbb{Z}^+,$$

for all $w \in \mathcal{W}$.

If \mathcal{W} is induced by Σ, then \mathcal{W}_* is (realizable and) induced by Σ_*, and the adjoint of \mathcal{W}_* is the original behavior \mathcal{W}.

3 Is this statement true or false if \mathcal{W} is not realizable?
Passive Behaviors

A behavior W on \mathcal{W} is
Passive Behaviors

A behavior \mathcal{W} on \mathcal{V} is

(i) **forward passive** if

$$\sum_{k=0}^{n}[w(k), w(k)]_{\mathcal{V}} \geq 0, \quad w \in \mathcal{W}, \quad n \in \mathbb{Z}^+,$$
Passive Behaviors

A behavior \mathcal{W} on \mathcal{V} is

(i) **forward passive** if

$$\sum_{k=0}^{n} [w(k), w(k)]_{\mathcal{V}} \geq 0, \quad w \in \mathcal{W}, \quad n \in \mathbb{Z}^+,$$

(ii) **backward passive** if \mathcal{W}_* is forward passive,
Passive Behaviors

A behavior \mathcal{W} on \mathcal{V} is

(i) **forward passive** if

$$\sum_{k=0}^{n} [w(k), w(k)]_{\mathcal{V}} \geq 0, \quad w \in \mathcal{W}, \quad n \in \mathbb{Z}^+,$$

(ii) **backward passive** if \mathcal{W}_* is forward passive,

(iii) **passive** if it is realizable\(^4\) and both forward and backward passive.

\(^4\)We do not know if the realizability assumption is redundant or not.
Passive S/S Systems \leftrightarrow Passive Behaviors

Proposition 1. Let \mathcal{W} be the behavior induced by a s/s system Σ.
Proposition 1. Let \mathcal{W} be the behavior induced by a s/s system Σ.

(i) If Σ is forward H-passive for some $H > 0$, then \mathcal{W} is forward passive.
Passive S/S Systems \leftrightarrow Passive Behaviors

Proposition 1. Let \mathcal{W} be the behavior induced by a s/s system Σ.

(i) If Σ is forward H-passive for some $H > 0$, then \mathcal{W} is forward passive.

(ii) If Σ is backward H-passive for some $H > 0$, then \mathcal{W} is backward passive.
Proposition 1. Let \mathcal{W} be the behavior induced by a s/s system Σ.

(i) If Σ is forward H-passive for some $H > 0$, then \mathcal{W} is forward passive.

(ii) If Σ is backward H-passive for some $H > 0$, then \mathcal{W} is backward passive.

(iii) If Σ is forward H_1 passive for some $H_1 > 0$ and backward H_2 passive for some $H_2 > 0$, then Σ is both H_1-passive and H_2-passive, and \mathcal{W} is passive.
Proposition 1. Let $Ψ$ be the behavior induced by a s/s system $Σ$.

(i) If $Σ$ is **forward H-passive** for some $H > 0$, then $Ψ$ is **forward passive**.

(ii) If $Σ$ is **backward H-passive** for some $H > 0$, then $Ψ$ is **backward passive**.

(iii) If $Σ$ is **forward H_1 passive** for some $H_1 > 0$ and **backward H_2 passive** for some $H_2 > 0$, then $Σ$ is both H_1-passive and H_2-passive, and $Ψ$ is **passive**.

Thus, if $Σ$ is **backward H_2-passive** for at least one H_2, then **forward H-passivity implies backward H-passivity** for all $H > 0$.
H-Passive Realizations

Theorem 2. Let \mathcal{W} be a passive behavior on \mathcal{W}. Then
\(H\)-Passive Realizations

Theorem 2. Let \(\mathcal{W} \) be a passive behavior on \(\mathcal{W} \). Then

(i) \(\mathcal{W} \) has a minimal passive \(s/s \) realization.
H-Passive Realizations

Theorem 2. Let \mathcal{W} be a passive behavior on \mathcal{W}. Then

(i) \mathcal{W} has a minimal passive s/s realization.

(ii) Every H-passive realization Σ of \mathcal{W} is **pseudo-similar** to a passive realization Σ_H with pseudo-similarity operator \sqrt{H}. The system Σ_H is determined uniquely by Σ and H.
H-Passive Realizations

Theorem 2. Let \mathcal{W} be a passive behavior on \mathcal{W}. Then

(i) \mathcal{W} has a minimal passive s/s realization.

(ii) Every H-passive realization Σ of \mathcal{W} is **pseudo-similar to a passive realization** Σ_H with pseudo-similarity operator \sqrt{H}. The system Σ_H is determined uniquely by Σ and H.

(iii) Every **minimal** realization of \mathcal{W} is H-passive for some $H > 0$. Moreover, it is possible to choose H in such a way that the system Σ_H in (ii) is minimal.
H-Passive Realizations

Theorem 2. Let \mathcal{W} be a passive behavior on \mathcal{W}. Then

(i) \mathcal{W} has a minimal passive s/s realization.

(ii) Every H-passive realization Σ of \mathcal{W} is pseudo-similar to a passive realization Σ_H with pseudo-similarity operator \sqrt{H}. The system Σ_H is determined uniquely by Σ and H.

(iii) Every minimal realization of \mathcal{W} is H-passive for some $H > 0$. Moreover, it is possible to choose H in such a way that the system Σ_H in (ii) is minimal.

(ii) says: We can make Σ passive by replacing the original norm in \mathcal{X} by the new norm $\|x\|_H = \|\sqrt{H}x\|_\mathcal{X}$.
Theorem 2. Let \(\mathcal{W} \) be a passive behavior on \(\mathcal{W} \). Then

(i) \(\mathcal{W} \) has a minimal passive s/s realization.

(ii) Every \(H \)-passive realization \(\Sigma \) of \(\mathcal{W} \) is pseudo-similar to a passive realization \(\Sigma_H \) with pseudo-similarity operator \(\sqrt{H} \). The system \(\Sigma_H \) is determined uniquely by \(\Sigma \) and \(H \).

(iii) Every minimal realization of \(\mathcal{W} \) is \(H \)-passive for some \(H > 0 \). Moreover, it is possible to choose \(H \) in such a way that the system \(\Sigma_H \) in (ii) is minimal.

(ii) says: We can make \(\Sigma \) passive by replacing the original norm in \(X \) by the new norm \(\|x\|_H = \|\sqrt{H}x\|_X \).

(iii) says: It is possible to make the resulting system both passive and minimal.
Ordering of Solutions of KYP Inequality

We denote the set of all solutions $H = H^* > 0$ of the KYP inequality by M_Σ, and we let M^min_Σ be the set of $H \in M_\Sigma$ for which the system Σ_H in assertion (ii) of Theorem 2 is minimal by L^min_Σ.
Ordering of Solutions of KYP Inequality

We denote the set of all solutions $H = H^* > 0$ of the KYP inequality by M_Σ, and we let M_Σ^min be the set of $H \in M_\Sigma$ for which the system Σ_H in assertion (ii) of Theorem 2 is minimal by L_Σ^min.

Theorem 3. Let Σ be a minimal s/s system with a passive behavior. Then $M_\Sigma^\text{min} \neq \emptyset$ and M_Σ^min contains a minimal element H_\circ and a maximal element H_\bullet, i.e., $H_\circ \preceq H \preceq H_\bullet$ for every $H \in M_\Sigma^\text{min}$.

$H_1 \preceq H_2 \iff \mathcal{D}(\sqrt{H_2}) \subset \mathcal{D}(\sqrt{H_1})$ and $\|\sqrt{H_1}x\| \leq \|\sqrt{H_2}x\|$ $\forall x \in \mathcal{D}(\sqrt{H_2})$.
Ordering of Solutions of KYP Inequality

We denote the set of all solutions $H = H^* > 0$ of the KYP inequality by M_Σ, and we let M^{\min}_Σ be the set of $H \in M_\Sigma$ for which the system Σ_H in assertion (ii) of Theorem 2 is minimal by L^{\min}_Σ.

Theorem 3. Let Σ be a minimal s/s system with a passive behavior. Then $M^{\min}_\Sigma \neq \emptyset$ and M^{\min}_Σ contains a minimal element H_\circ and a maximal element H_\bullet, i.e., $H_\circ \preceq H \preceq H_\bullet$ for every $H \in M^{\min}_\Sigma$.

$H_1 \preceq H_2 \iff D(\sqrt{H_2}) \subset D(\sqrt{H_1})$ and $\|\sqrt{H_1}x\| \leq \|\sqrt{H_2}x\|$ \(\forall x \in D(\sqrt{H_2})\).

$E_{H_\circ}(\cdot)$ is the available storage, and $E_{H_\bullet}(\cdot)$ is the required supply (Willems).
Ordering of Solutions of KYP Inequality

We denote the set of all solutions $H = H^* > 0$ of the KYP inequality by M_Σ, and we let M_Σ^{min} be the set of $H \in M_\Sigma$ for which the system Σ_H in assertion (ii) of Theorem 2 is minimal by L_Σ^{min}.

Theorem 3. Let Σ be a minimal s/s system with a passive behavior. Then $M_\Sigma^{\text{min}} \neq \emptyset$ and M_Σ^{min} contains a minimal element H_\circ and a maximal element H_\bullet, i.e., $H_\circ \preceq H \preceq H_\bullet$ for every $H \in M_\Sigma^{\text{min}}$.

$H_1 \preceq H_2 \iff D(\sqrt{H_2}) \subset D(\sqrt{H_1})$ and $\|\sqrt{H_1}x\| \leq \|\sqrt{H_2}x\|$ $\forall x \in D(\sqrt{H_2})$.

$E_{H_\circ}(\cdot)$ is the available storage, and $E_{H_\bullet}(\cdot)$ is the required supply (Willems).

H_\circ is the optimal and H_\bullet is the \ast-optimal solution of the KYP inequality (Arov).
Further Extensions

Instead of working with energy inequalities we can also work with energy balance equations. In this case the system will be forward conservative or even conservative.
Further Extensions

Instead of working with energy inequalities we can also work with energy balance equations. In this case the system will be forward conservative or even conservative.

Corresponding continuous time results are being developed. The scattering i/s/o continuous time case is treated in [AS06]. This will be joint work with Mikael Kurula.
Further Extensions

Instead of working with energy inequalities we can also work with energy balance equations. In this case the system will be forward conservative or even conservative.

Corresponding continuous time results are being developed. The scattering i/s/o continuous time case is treated in [AS06]. This will be joint work with Mikael Kurula.

Analogous results also hold for the quadratic cost minimization problem and its dual. The advantage with this approach is that we get rid of the finite cost condition. This is current joint work with Mark Opmeer.
References

[Yak75] ______, The frequency theorem for the case in which the state space and the control space are Hilbert spaces, and its application in certain