Olof Staffans,
Åbo Akademi University, Finland

Henk de Snoo Seminar, Dec 17, 2010

Based on joint work with
Damir Z. Arov and
Mikael Kurula

olof.staffans@abo.fi

http://users.abo.fi/staffans
Grandpa, where do they come from?

Olof Staffans,
Åbo Akademi University, Finland

Henk de Snoo Seminar, Dec 17, 2010

Based on joint work with
Damir Z. Arov and
Mikael Kurula

olof.staffans@abo.fi

http://users.abo.fi/staffans
A **boundary control input/state/output system** can be written in the form

\[
\Sigma_{i/s/o} : \begin{cases}
\dot{x}(t) = Lx(t), \\
u(t) = \Gamma_0 x(t), & t \geq 0 \\
y(t) = \Gamma_1 x(t), \\
x(0) = x_0.
\end{cases}
\]

(1)

\(\mathcal{X}\) is the *state space*, \(x(t) \in \mathcal{X}\), \(x_0 \in \mathcal{X}\),

\(\mathcal{U}\) is the *input space*, \(u(t) \in \mathcal{U}\),

\(\mathcal{Y}\) is the *output space*, \(y(t) \in \mathcal{Y}\) (these are Hilbert spaces),

\(L\) is the *main operator* (always unbounded),

\(\Gamma_0\) is the *boundary control operator* (surjective and unbounded),

\(\Gamma_1\) is the *observation operator* (can be bounded or unbounded).
A boundary control state/signal system is similar to a boundary control i/s/o system, but we no longer specify which part of the “boundary signal” \(w(t) := \begin{bmatrix} u(t) \\ y(t) \end{bmatrix} \) is the input, and which part is the output. After replacing \(\begin{bmatrix} \Gamma_0 \\ \Gamma_1 \end{bmatrix} \) by \(\Gamma \) we get an equation of the type

\[
\Sigma : \begin{cases}
\dot{x}(t) = Lx(t), \\
w(t) = \Gamma x(t),
\end{cases} \quad t \geq 0; \quad x(0) = x_0. \tag{2}
\]

\(\mathcal{X} \) is the state space, \(x(t) \in \mathcal{X}, x_0 \in \mathcal{X} \), \(\mathcal{X} \) is a Hilbert space, \(\mathcal{W} \) is the signal space, \(w(t) \in \mathcal{W}, \mathcal{W} \) is a Kreĭn space, \(L \) is the main operator (always unbounded), \(\Gamma \) is the boundary operator (also unbounded), \(L \) and \(\Gamma \) have the same domain

\[
\text{Dom}(L) = \text{Dom}(\Gamma) = \text{Dom} \left(\begin{bmatrix} \Gamma \\ \Gamma \end{bmatrix} \right) \subset \mathcal{X}.
\]
There is an almost one-to-one correspondence between conservative boundary control s/s systems ↔ (conservative) boundary triplets
However, today I want to talk about the dynamics of boundary relations and not the dynamics of boundary triplets. To do this I have to go beyond the class of boundary s/s systems.
Given a boundary control s/s system

\[\begin{array}{l}
\dot{x}(t) = Lx(t), \\
w(t) = \Gamma x(t), \\
t \geq 0; \\
x(0) = x_0.
\end{array} \tag{2} \]

we can rewrite it in the graph form

\[\begin{array}{l}
\left[\begin{array}{c}
\dot{x}(t) \\
x(t) \\
w(t)
\end{array} \right] \in V, \\
t \in \mathbb{R}^+, \\
x(0) = x_0,
\end{array} \tag{3} \]

where

\[V := \left\{ \left[\begin{array}{c}
Lx \\
x \\
\Gamma x
\end{array} \right] \in \mathcal{R} \mid x \in \text{Dom} \left(\left[\begin{array}{c}
L \\
\Gamma
\end{array} \right] \right) \right\}. \tag{4} \]

Here \(V \) is the generating subspace, which is a subspace of the node space \(\left[\begin{array}{c}
x \\
\dot{x} \\
w
\end{array} \right] \).
A general state/signal system $\Sigma = (V; \mathcal{X}, \mathcal{W})$ is of the form

$$\Sigma : \begin{cases}
\begin{bmatrix} \dot{x}(t) \\
 x(t) \\
w(t)
\end{bmatrix} \in V, & t \in \mathbb{R}^+, \ x(0) = x_0,
\end{cases}$$

where \mathcal{X} is the state space (a Hilbert space), and \mathcal{W} is the signal space (a Kreĭn space).

The generating subspace V is a closed subspace of the node space $\mathcal{K} := \left[\begin{array}{c} \mathcal{X} \\
\mathcal{X} \\
\mathcal{W} \end{array} \right]$.

$x(t) \in \mathcal{X}$ is the state at time $t \in \mathbb{R}^+$,

$x_0 \in \mathcal{X}$ is the initial state at time zero,

$w(t) \in \mathcal{W}$ is the signal at time $t \in \mathbb{R}^+$.
A **system node** is a construction used in the theory of well-posed (and non-wellposed) linear systems. It has a state space \mathcal{X} (a Hilbert space), input space \mathcal{U} (a Hilbert space), output space \mathcal{Y} (a Hilbert space). It is a closed operator $S : [\mathcal{X} \ U] \rightarrow [\mathcal{X} \ Y]$. The dynamics of a system node is described by

$$\Sigma : \begin{bmatrix} \dot{x}(t) \\ y(t) \end{bmatrix} = S \begin{bmatrix} x(t) \\ u(t) \end{bmatrix}, \quad t \in \mathbb{R}^+, \quad x(0) = x_0. \quad (5)$$

We can rewrite this as a state/signal system by taking $\mathcal{W} = [\mathcal{Y} \ U]$ and defining

$$\mathcal{V} := \left\{ \begin{bmatrix} z \\ \dot{x} \\ \dot{y} \\ \dot{u} \end{bmatrix} \subset [\mathcal{X} \ \mathcal{Y}] \ \mid \begin{bmatrix} z \\
\dot{x} \\
\dot{y} \\
\dot{u} \end{bmatrix} = S \begin{bmatrix} x \\
u \end{bmatrix} \right\}. \quad (6)$$
Example: Classical I/S/O System

Consider the classical input/state/output system

$$\Sigma : \begin{cases} \dot{x}(t) = Ax(t) + Bu(t), \\ y(t) = Cx(t) + Du(t), \end{cases} \quad t \in \mathbb{R}^+, \quad x(0) = x_0. \quad (7)$$

Here A, B, C, and D are bounded linear operators.

We can rewrite this as a state/signal system by taking $\mathcal{W} = \begin{bmatrix} \mathcal{Y} \\ \mathcal{U} \end{bmatrix} (= \mathcal{Y} \times \mathcal{U})$ and defining

$$\mathcal{V} := \left\{ \begin{bmatrix} z \\ \dot{x} \\ \dot{y} \\ u \end{bmatrix} \subset \begin{bmatrix} \dot{x} \\ \dot{y} \end{bmatrix} \mid z = Ax + Bu, \quad y = Cx + Du \right\}. \quad (8)$$
Thus, state/signal systems need not have anything to do with boundary control!
However, there is an almost one-to-one correspondence between conservative state/signal systems ↔ (conservative) boundary relations!
Thus, boundary relations do not necessarily have anything to do with boundary control!
We recall the equation describing the dynamics:

\[
\Sigma : \left\{ \begin{array}{l}
\dot{x}(t) \\
x(t) \\
w(t)
\end{array} \right\} \in V, \quad t \in \mathbb{R}^+, \quad x(0) = x_0.
\]

(3)

- \([\dot{x}, w]\) is a **classical trajectory** of \(\Sigma\) if \([\dot{x}, w]\) \in \left[C^1(\mathbb{R}^+; \mathcal{X}) \right] \times \left[C(\mathbb{R}^+; \mathcal{X}) \right] \) and (3) holds for all \(t \in \mathbb{R}^+\).

- \([\dot{x}, w]\) is a **generalized trajectory** of \(\Sigma\) if \([\dot{x}, w]\) \in \left[C(\mathbb{R}^+; \mathcal{X}) \right] \times \left[L^2_{loc}(\mathbb{R}^+; \mathcal{W}) \right] \) and there exists a sequence of classical trajectories \([\dot{x}_n, w_n]\) such that \(x_n \to x\) uniformly on bounded intervals and \(w_n \to w\) in \(L^2_{loc}(\mathbb{R}^+; \mathcal{W})\).
In this talk I focus on state/signal systems which are conservative, as studied in (Kur10). They are well-posed in the sense of (KS09).

Simplifying Assumption: In the equation describing the dynamics

\[
\Sigma : \begin{cases}
 \begin{bmatrix} \dot{x}(t) \\ x(t) \\ w(t) \end{bmatrix} & \in V, \\
 t & \in \mathbb{R}^+, \\
 x(0) & = x_0.
\end{cases}
\] (3)

I throughout make the simplifying assumption that the present state \(x(t)\) and the present signal \(w(t)\) determine the value of \(\dot{x}(t)\) uniquely. To guarantee this I assume (for simplicity) that

\[
\begin{bmatrix} z_0 \\ 0 \end{bmatrix} \in V \Rightarrow z = 0.
\] (9)

The assumption can always be made “without loss of generality” (by factoring out an unreachable and unobservable part of the state space).
A conservative s/s system

$$\Sigma : \begin{cases} \begin{bmatrix} \dot{x}(t) \\ x(t) \\ w(t) \end{bmatrix} \in V, \\ t \in \mathbb{R}^+, \\ x(0) = x_0, \end{cases} \quad (3)$$

preserves energy, and so does the dual system. Preservation of energy means that

$$\frac{d}{dt} \| x(t) \|_X^2 = [w(t), w(t)]_W. \quad (10)$$

Here $\frac{1}{2} \| x(t) \|_X^2$ is the internal energy stored state at time t (= the Hamiltonian), and $\frac{1}{2} [w(t), w(t)]_W$ represents the power entering into the system from the outside world. Thus, if we want to allow the energy to flow in both directions, then we must allow the right-hand side to take both positive and negative values, and we cannot replace the indefinite inner product $[\cdot, \cdot]_W$ in W by a positive definite Hilbert space inner product $(\cdot, \cdot)_W$ in W.
By carrying out the differentiation in the power balance equation

\[
\frac{d}{dt} \|x(t)\|^2 = [w(t), w(t)]_\mathcal{W}
\]

(10)

we get the *Lagrangian identity*

\[
-(\dot{x}(t), x(t))_\mathcal{X} - (x(t), \dot{x}(t))_\mathcal{X} + [w(t), w(t)]_\mathcal{W} = 0.
\]

(11)

At \(t = 0 \) the vector \(\begin{bmatrix} \dot{x}(0) \\ x(0) \\ w(0) \end{bmatrix} \) can be an arbitrary vector in \(\mathcal{V} \), and hence (11) with \(t = 0 \) implies

\[
-(z, x)_\mathcal{X} - (x, z)_\mathcal{X} + [w, w]_\mathcal{W} = 0, \quad \begin{bmatrix} z \\ \dot{x} \\ w \end{bmatrix} \in \mathcal{V}.
\]

(12)

This inequality says that \(\mathcal{V} \) is a neutral subspace of the node space \(\mathcal{K} \) with respect to a suitable indefinite inner product!
Define

\[
\begin{bmatrix}
 z_1 \\ x_1 \\ w_1
\end{bmatrix},
\begin{bmatrix}
 z_2 \\ x_2 \\ w_2
\end{bmatrix}
\begin{bmatrix}
 0 & -1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
 z_1 \\ x_1 \\ w_1
\end{bmatrix},
\begin{bmatrix}
 z_2 \\ x_2 \\ w_2
\end{bmatrix}
\begin{bmatrix}
 0 & -1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1
\end{bmatrix}.
\]

Then

\[-(z, x) x - (x, z) x + [w, w] \in V = 0,
\begin{bmatrix}
 z \\ x \\ w
\end{bmatrix} \in V \quad (12)
\]
says that

\[
\begin{bmatrix}
 z \\ x \\ w
\end{bmatrix},
\begin{bmatrix}
 z \\ x \\ w
\end{bmatrix}
\begin{bmatrix}
 0 & -1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
 z \\ x \\ w
\end{bmatrix} = 0,
\begin{bmatrix}
 z \\ x \\ w
\end{bmatrix} \in V \quad (14)
\]

In other words, \(V \) is a neutral subspace of the node space \(\mathcal{R} \) with respect to the inner product (13). Equivalently, \(V \subset V[\perp] \).
We get the dual system by replacing V by $V^{[\perp]}$. The duals system preserves energy if $V^{[\perp]}$ is neutral, i.e., if $V^{[\perp]} \subset V$.

Definition

The state/signal system

$$\Sigma : \begin{cases} \begin{bmatrix} \dot{x}(t) \\ x(t) \\ w(t) \end{bmatrix} \in V, \\ t \in \mathbb{R}^+, \\ x(0) = x_0, \end{cases}$$

is conservative if V is Lagrangian, i.e., if $V = V^{[\perp]}$.

\[(3) \]
By a Lagrangian decomposition of the Kreĭn signal space \(\mathcal{W} \) we mean a direct sum decomposition \(\mathcal{W} = \mathcal{U} \oplus \mathcal{Y} \) where both \(\mathcal{U} \) and \(\mathcal{Y} \) are Lagrangian subspaces of \(\mathcal{W} \), i.e., \(\mathcal{U} = \mathcal{U}^\perp \) and \(\mathcal{Y} = \mathcal{Y}^\perp \). With suitable choices of norms in \(\mathcal{U} \) and \(\mathcal{Y} \) we can write the inner product in \(\mathcal{W} \) in the form

\[
[y_1 + u_1, y_2 + u_2]_{\mathcal{W}} = (\Psi y_1, u_2)_{\mathcal{U}} + (u_1, \Psi y_2)_{\mathcal{U}},
\]

for all \(u_1, u_2 \in \mathcal{U} \), and \(y_1, y_2 \in \mathcal{Y} \), and for some unitary operator \(\Psi : \mathcal{U} \rightarrow \mathcal{Y} \). We then write \(\mathcal{W} = \mathcal{U} \oplus \mathcal{Y} \).
Boundary Relation = Generating Subspace

Answer to question “Where do they come from”?: A boundary relation \(\simeq \) the generating subspace \(V \) of a conservative s/s system which has been reinterpreted as a relation.

Theorem

Let \((V; \mathcal{X}, \mathcal{W})\) be a conservative s/s node and assume that there exists a Lagrangian decomposition \(\mathcal{W} = \mathcal{U} + \mathcal{Y} \). Interpret \(V \) as the (slightly modified) graph of a relation \(\Gamma: \begin{bmatrix} \mathcal{X} \\ \mathcal{W} \end{bmatrix} \rightarrow \begin{bmatrix} \mathcal{U} \\ \mathcal{U} \end{bmatrix} : \)

\[
V = \left\{ \begin{bmatrix} iz \\ xu \\ i\psi^*y \end{bmatrix} \in \begin{bmatrix} \mathcal{X} \\ \mathcal{W} \end{bmatrix} \mid \{[x], [u]\} \in \Gamma \right\}, \tag{16}
\]

and set \(R := \text{Ker} (\Gamma) \). Then \(R \) is a closed symmetric operator in \(\mathcal{X} \), \(R^* \) is the closure of \(\text{dom} (\Gamma) \) in \(\begin{bmatrix} \mathcal{X} \\ \mathcal{X} \end{bmatrix} \), and \(\Gamma \) is a conservative boundary relation for \(R^* \).

Boundary control s/s system \(\Rightarrow \) \(\Gamma \) is an operator.
Taking Laplace transforms in the formula \[
\begin{bmatrix}
\dot{x}(t) \\
x(t) \\
w(t)
\end{bmatrix} \in V \text{ for all } t > 0,
\]
we get
\[
\begin{bmatrix}
\lambda \hat{x}(\lambda) - x(0) \\
\hat{x}(\lambda) \\
\hat{w}(\lambda)
\end{bmatrix} \in V, \quad \lambda \in \mathbb{C}^+.
\] (17)

Definition

The **characteristic manifold** of the s/s system \(\Sigma = (V; X, W)\) is the family of subspaces \(\hat{\mathcal{V}}(\lambda)\) defined by

\[
\hat{\mathcal{V}}(\lambda) = \left\{ \begin{bmatrix} x \\ x_0 \\ w \end{bmatrix} \in \begin{bmatrix} X \\ X \\ W \end{bmatrix} \mid \begin{bmatrix} \lambda x - x_0 \\ x \\ w \end{bmatrix} \in V \right\}.
\] (18)

The domain of \(\hat{\mathcal{V}}(\lambda)\) consists of all those points \(\lambda \in \mathbb{C}\) where this manifold is analytic.

Here \(\hat{\mathcal{V}}\) is **analytic** at a point \(\lambda_0\) if \(\hat{\mathcal{V}}(\lambda)\) has a graph representation in some neighborhood of \(\lambda_0\) with an analytic angle operator.
The characteristic manifold $\hat{\mathcal{V}}$ is defined and analytic (at least) in the open right-half plane.

The Weyl family and the Gamma field can be obtained from the characteristic manifold by first intersecting $\hat{\mathcal{V}}(\lambda)$ with $\begin{bmatrix} \chi \\ 0 \\ \mathcal{W} \end{bmatrix}$, then projecting it onto either $\begin{bmatrix} 0 \\ \chi \\ \mathcal{W} \end{bmatrix}$ or $\begin{bmatrix} \chi \\ 0 \\ \mathcal{U} \end{bmatrix}$, and finally interpreting the result as a relation.

Here \mathcal{U} is one of the two components in the Lagrangian decomposition $\mathcal{W} = \mathcal{U} \oplus \mathcal{Y}$.
Above I only discussed conservative state/signal systems. **Question:** What happens when the state/signal system is well-posed but not conservative?

Answer:

- We will then have to deal with two different generating subspaces \mathcal{V} and $\mathcal{V}^{\perp} \neq \mathcal{V}$, and two different s/s systems $\Sigma = (\mathcal{V}; \mathcal{X}, \mathcal{W})$ and $\Sigma^{\perp} = (\mathcal{V}^{\perp}; \mathcal{X}, \mathcal{W})$.

- To each of these s/s systems corresponds a “non-conservative boundary relation”.

- Thus, we end up with pairs of boundary relations instead of just one boundary relation.

- In this case the “Lagrangian identity” simply says that the two systems are dual to each other.

- Details will be worked out later.
Boundary relations = generating subspaces of conservative state/signal systems, reinterpreted as relations.

The Weyl family and the Gamma fields are obtained from the characteristic manifold of the state/signal system by intersections and projections.

Pairs of boundary relations are related to non-conservative state/signal systems.

Boundary relations do not in reality have much to do with boundary control, only historically.

Mikael Kurula and Olof J. Staffans, *Connections between smooth and generalized trajectories of a state/signal system*, accepted for publication, 2010.

